

Contaminated Land Report Hornsey Town Hall Renaissance Project Haringey Council

> CS/026506 March 2010

CAPITA SYMONDS successful people, projects and performance

Executive Summary

This report presents the findings of a Contaminated Land Report for the Hornsey Town Hall Renaissance Project site, London. It is based on desk top information and an exploratory site investigation undertaken in June 2009 under the supervision of Capita Symonds.

The report has been prepared on behalf of the London Borough of Haringey (LBH) to provide an understanding of the ground conditions beneath the site in support of a planning application for the redevelopment of the site.

The Town Hall Building is to undergo alterations, extension and change of use from B1 (Business) and Sui Generis to a mixed use scheme incorporating: A4 (bars), D1 (Non-residential Institutions), C3 Dwelling houses, D2 (Assembly and Leisure) and retaining existing B1 and Sui Generis uses. The refurbishment will be accompanied by a mixture of new build residential development and conversion of existing buildings to residential use. This aspect is known as the "Facilitating Development". The Facilitating Development includes 123 dwelling units comprising the following:

- Block A New build residential with 66 dwellings arranged over 5 storeys with undercroft and basement parking.
- Block B New build residential with 26 dwellings arranged over 5 storeys.
- Mews New build residential comprising 4 no. mews houses.
- East Wing Conversion of the East Wing of the Town Hall Building to accommodate 13 residential dwellings arranged over 4 storeys with 2 roof extensions on the 3rd floor.
- Link building conversion of the Link Building of the Town Hall Building of accommodate 6 residential dwellings arranged over 4 storeys.
- Broadway Annexe West Part conversion and extension to accommodate 8 residential dwellings at first and second floors.

The site is approximately 1.4 hectares in size and is situated in a predominantly residential area within the Hornsey area of North London. The site is currently dominated by the Hornsey Town Hall building, surrounded by various office buildings, along with car parking and soft landscaping areas.

Based on the exploratory ground investigation undertaken at the site in June 2009 the ground conditions beneath the site are reported to comprise Made Ground overlying Alluvium and London Clay.

The level of risk to current and future site users and built structures is preliminary assessed to be low to moderate. A significant potential source of contamination has not been identified at the site based on the desk top review of available information.

The exploratory ground investigation and generic quantitative risk assessment did identify one localised area of contamination in the north east area of the site. This contamination is thought to be associated with bitumen, ash and clinker that was recorded as being present in the shallow ground and is not thought to represent a significant source of below ground contamination. Furthermore, the identified contamination is outside the footprint of the proposed development and a direct pathway to future users has not been identified.

In the absence of soil gas monitoring data and as a conservative assumption there is potential for soil gas generation beneath the site. Notwithstanding, the likelihood is considered to be low on the basis of the limited thickness of Made Ground encountered at the site

The groundwater / controlled water setting of the site is considered to be low sensitivity on the basis of the underlying clay which is classified as a non aquifer and the lack of a sensitive surface waster receptor in the immediate vicinity of the site.

At this stage and on the basis of the above information, significant remediation works are not expected to be required to support future redevelopment of the site. Notwithstanding, and as a reasonable worst case scenario in the absence of data in the areas of proposed redevelopment, it is recommended that some provision should be made for the requirement of standard remediation practices. This would commonly comprise localised soil source removal and / or cover layer materials in areas of soft landscaping.

To validate the findings of this report and support likely future planning requirements it is recommended that a further small scale intrusive ground investigation is undertaken across the site. The small scale investigation will target the areas of the site that are proposed to be redeveloped and provide confirmation of the level of risk to future site users and built structures.

Contents

Executive Summary

1.	Introduction	1
2.	Site Location and Description	3
3.	Geology, Hydrogeology and Hydrology	4
4.	Site History	6
5.	Additional Information	7
6.	Conceptual site model	9
7.	Generic Risk Assessment	11
8.	Conclusions and Recommendations	16

Figures

Figure 1	Site Location Plan
Figure 2	Site Plan
Figure 3	Conceptual Site Model

Appendices

Development Plan
Landmark Envirocheck Report
CSL Geotechnical Report, Hornsey Town Hall,
September 2009
GAC Screening Tables

1. Introduction

- 1.1 This report has been prepared on behalf of the London Borough of Haringey (LBH).and presents the findings of a Contaminated Land Study as part of a planning application for the proposed redevelopment and refurbishment of the Hornsey Town Hall site, Haringey.
- 1.2 The objective of the commission is to provide an understanding of the ground conditions beneath the site in support of a planning application for the redevelopment. The Town Hall Building is to undergo alterations, extension and change of use from B1 (Business) and Sui Generis to a mixed use scheme incorporating: D1 (Non-residential Institutions), C3 Dwelling houses, D2 (Assembly and Leisure), A4 (bars) and retaining existing B1 and Sui Generis uses. The refurbishment will be accompanied by a mixture of new build residential development and conversion of existing buildings to residential use. This aspect is known as the "Facilitating Development". The Facilitating Development includes 123 dwelling units comprising the following:
 - Block A New build residential with 66 dwellings arranged over 5 storeys with undercroft and basement parking.
 - Block B New build residential with 26 dwellings arranged over 5 storeys.
 - Mews New build residential comprising 4 no. mews houses.
 - East Wing Conversion of the East Wing of the Town Hall Building to accommodate 13 residential dwellings arranged over 4 storeys with 2 roof extensions on the 3rd floor.
 - Link building conversion of the Link Building of the Town Hall Building of accommodate 6 residential dwellings arranged over 4 storeys.
 - Broadway Annexe West Part conversion and extension to accommodate 8 residential dwellings at first and second floors.
- 1.3 It is understood that the existing Hornsey Town Hall is to be refurbished with development proposals comprising a Mews development in the north west of the site and two new residential blocks A and B in the east and north of the site, proposed to be 4 /5 storey developments. All three new developments are to be located in the surrounding area of the Town Hall, with areas of soft landscaping also proposed. A development plan has been provided as Appendix 1.
- 1.4 This report is based on desk top information and an exploratory investigation undertaken in June 2009 under the supervision of Capita Symonds Limited. The ground investigation was predominantly designed for geotechnical / structural purposes although select contamination samples were also collected during the works.
- 1.5 This report presents the findings of the desk top review and a generic quantitative risk assessment of the contaminative samples collected from the exploratory ground investigation. The Environment Agency Model Procedures for the Management of Land Contamination CLR 11 has been consulted in the preparation of this document.

- 1.6 The following tasks have been undertaken in the production of the Report:
 - visit the site to assess by visual inspection potential environmental liabilities associated with beneath ground contamination at the site and the surrounding land;
 - to obtain and review readily available historic maps and third party data of the site and surrounding land to establish further historical and potentially contaminating land uses within the vicinity of the site;
 - to review geological and hydrogeological records for the site and surrounding area to assess the potential for pollution migration;
 - to obtain public records held by the Environment Agency and other third parties for the site and surrounding land, including details of licensed and historic landfills, pollution incidents, industrial processes and details of groundwater resources;
 - to present a conceptual site model;
 - to undertake a generic quantitative risk assessment of available soil chemical laboratory results; and
 - identify broad remediation requirements and recommendations for future works
- 1.7 Factual information in this report was obtained from the following sources:
 - Landmark Information Group, Envirocheck Report;
 - British Geological Survey (BGS) Sheets 256 (North London);
 - EA Groundwater Vulnerability Map (Sheet 40 Thames Estuary);
 - STATs, Geotechnical Report, Hornsey Town Hall, Hornsey, Report No. 240362-001, September 2009; and
 - a site visit undertaken by a Capita Symonds Environmental Consultant.
- 1.8 This report is for the use of LBH and should not be relied upon by other parties unless specifically advised by Capita Symonds Ltd in writing.

2. Site Location and Description

Site Location

- 2.1 The site is situated within the Hornsey area of North London. The site is centred on national grid reference 530221, 188348 and the site surface area is approximately 1.4 hectares. A site location plan is provided as Figure 1.
- 2.2 The site is located in the centre of Hornsey to the east of the main high street named Broadway. The immediate environs of the site consist the Broadway and retail properties to the west, residential properties to the north and east, the Library to the south with the road Haringey Park beyond, and to the south west is the road Hatherley Gardens-lined with residential properties.

Site Description

- 2.3 A Capita Symonds Consultant undertook a site walkover on the 8th June 2009 as part of the Ground Contamination Desk Study Report, to identify potential areas of contamination concern from the current use of the site, this walkover was undertaken during the geotechnical ground investigation undertaken by Stats.
- 2.4 The site is currently dominated by the Hornsey Town Hall building, surrounded by various office buildings, along with car parking and soft landscaping areas. The site boundary extends east and west beyond the town hall as shown on the site layout plan provided as Figure 2, which includes proposed areas of residential development overlain onto the current layout.
- 2.5 Vehicle access and egress is available from Hatherley Gardens, with pedestrian access alongside the town square leading on to Broadway. Immediately in front of the Town Hall building is a turning circle with a water fountain in the centre. To the north of the main entrance is the Broadway Annex
- 2.6 In the north east corner of the site is a building formerly used as a clinic, a row of garages and a 2 storey prefabricated office building. There is vehicle entrance to the site leading between residential properties to Weston Park.
- 2.7 To the south of the main building is an area of soft landscaping and a car park surfaced with tarmac. In a court yard area to the main building a single storey office building has been constructed. There are garages located in the northwest corner of this car park and the entrance to the car park is via an access road in the southeast corner that leads down the side of the library building to the road Haringey Park.
- 2.8 In the south east corner of the site is a separate car park that is surfaced in a combination of gravel and poor quality tarmac. There are two shipping containers situated in the centre of the car park that are thought to be used for storage. The car park is accessed directly onto Haringey Park in the south east corner of the site.

3. Geology, Hydrogeology and Hydrology

3.1 A review was undertaken of the relevant published British Geological Survey (BGS) 1:50,000 solid and drift geological map (Sheets 256, North London). The published geology of the site is summarised in Table 3.1 below.

Age	Formation	Lithology	Typical Thickness
Eocene	London Clay	Clay, silty in part	90-110 m
Eocene Bagshot Formation		Sand	Unknown

Table 3.1 Description of the Published Solid and Drift Geology underlying the Site

3.2 Although published geology does not detail the presence of made ground at the site, there is potential for made ground to be present associated with the site's historic use.

Hydrogeology

Classification

- 3.3 The EA groundwater vulnerability map (Sheet 40, Thames Estuary, 1:100,000 Series) classifies the London Clay beneath the site as a non aquifer with negligible permeability. The forthcoming changes to the nomenclature of aquifers in accordance with Water Framework Directive 2000/60/EC requirements will see the existing designation of minor aquifers largely transferred across to secondary aquifers. Although secondary aquifers seldom produce large quantities of water for abstraction, they are important for local water supplies and in supporting base flow in rivers.
- 3.4 The soil at the site has been given a soil vulnerability class of 'high leaching potential' as a worst case scenario (applied to all areas classified as 'urban'). These are generally assumed to be soils which readily transmit liquid discharges, because they are either shallow or susceptible to rapid flow directly to rock, gravel or groundwater.

Groundwater Source Protection Zone

3.5 The Envirocheck report, provided as Appendix 1, indicates that the site does not lie within a source protection zone.

Hydrology

- 3.6 The nearest surface water feature is the Crouch Hill Reservoir, located 564 m southeast of the site boundary.
- 3.7 The site surface area comprises approximately 0.2 ha of soft landscaping and 1.2 ha of buildings and hardcover. Therefore, a low rate of infiltration is currently expected at the site.

Discharge Consents

3.8 There are no discharge consents recorded as being located on site or located within 500 m of the site boundary.

3.9 The nearest discharge consent is located 883 m north east of the site and the operator is recorded as Essex County Council. The consent effective date is 22nd June 1972, with a revocation date of 12th February 1992. The consent is for the discharge of other matter surface water and the receiving water is recorded as a freshwater river / stream.

Licensed Abstraction

3.10 Envirocheck data shows no groundwater abstraction licences within 500 m of the site.

4. Site History

4.1 Reference has been made to historic mapping dating from the late 19th Century included in the Envirocheck Report prepared by Landmark Information Group Ltd, attached as Appendix 2. The following Tables 4.1 and 4.2 provide a chronological commentary describing the historical development of the site, with particular reference to potential sources of contamination.

Table 4.1 Summary of Mapping Reviewed				
Ordnance Survey (OS) Maps Reviewed (published dates)	Map Scale			
1863-1894, 1866, 1870-1872, 1896, 1913-1914, 1914-1915, 1935, 1935-1936, 1952-1955, 1952, 1970	1:2,500			
1946-1949, 1951-1955, 1952-1985, 1963-1972, 1973-1974, 1974-1980, 1986-1990, 1990, 1991, 1992-1995	1:1,250			
1873, 1879, 1896, 1920, 1938, 1950,	1:10,560			
1951, 1958, 1962-1968, 1967, 1975-1976, 1984, 1990-1996, 1999, 2008	1:10,000			

Table 4.2 Summary of the historical development of the site

Map Dates	Description	Comments		
1850 - 1863	Open Fields	No structures evident on site.		
1863 - 1894	Dwellings	Dwellings with open space located in the central and northern portion of the site.		
1895 - 1937	Dwellings	Including the Broadway Hall, and associated open space which is located within the northern section of the site.		
1937 - 1963	Town Hall and Clinic	Open space is absent and the site is occupied by two buildings identified as the 'Town Hall' and 'Clinic'. Additionally the dwellings that occupied the north western section of the Site are now identified as open space.		
1963 - 2008	Library	Another building now present on site identified as the 'Library'		

4.2 Based on the historic maps provided, Table 4.3 provides a description of potentially contaminative land uses within approximately 500 m of the site boundary.

Table 4.3: Summary of the historical development of the surrounding area (up to 500 m from site boundary)

Map Dates	Approximate Location	Description	
1951 - 1955 30 m West		Joinery	
	100 m south west	Warehouses	
	10 m to East	Substation.	
1951 - 1974	150 m North	Engineering Works	
1951 - 1972	10 m East	Coach Building Works	
1963 - 1972	50 m West	Paper works and works	
1963-1991	100 m west	'Depots' and 'Warehouses'	

NOTE: All locations are measured from the nearest site boundary.

5. Additional Information

- 5.1 The following research was undertaken to supplement the information gathered from historical mapping, geological assessment and hydrogeological study. The purpose of the research was to review environmental records to identify evidence for contaminative activities on site or in the surrounding area. The principal source of information was the Envirocheck Report provided by the Landmark Information Group and presented as Appendix 2.
- 5.2 Information on existing and recent activities at the site and the immediate surroundings within a 500 m radius, that may have an impact on the environment are summarised in Table 5.1 below and subsequently expanded in the following sections.

Environmental Aspect	On Site	0-250 m	251-500 m		
Water					
Abstractions	NR	NR	NR		
Discharge Consents	NR	NR	NR		
Pollution Incidents to Controlled Waters	NR	1	NR		
Local Authority Pollution Prevention and Controls	NR	4	3		
Waste	•	•	•		
Local Authority Recorded Landfill Sites	NR	NR	NR		
Licensed Waste Management Facilities	NR	NR	NR		
Registered Waste Treatment or Disposal Sites	NR	NR	NR		
Historical Landfill Sites	NR	NR	NR		
Industrial Land Use					
Contemporary Trade Directory Entries	1	28	33		
Fuel Station Entries	NR	NR	3		
Sensitive End Use					
Local Nature Reserves	NR	NR	2		

 Table 5.1 Summary of Environmental Records (within 500 m of the site)

NOTE: NR = None Recorded

Water

- 5.3 There are no recorded abstraction licenses for groundwater or surface water on site or within 500 m of the site boundary.
- 5.4 There are no discharge consents recorded as being located on site or located within 500 m of the site boundary. The nearest discharge consent is located 883 m north east of the site and the operator is recorded as Essex County Council. The consent effective date is 22nd June 1972, with a revocation date of 12th February 1992. The consent is for the discharge of other matter surface water and the receiving water is recorded as a freshwater river / stream.
- 5.5 There are no recorded pollution incidents to controlled waters which have occurred on site.
- 5.6 There is one minor pollution incident to controlled waters recorded at a distance of approximately 127 m north east of the site involving 'unknown Oils'. This was recorded on the 30th March 1993.
- 5.7 There are seven Local Authority Pollution Prevention and Controls (LAPPC) reported within a 500 m radius of the site boundary. The majority of these relate to dry cleaning services.

Waste

5.8 There are no local authority recorded landfill sites or historical landfill sites, licensed waste management facilities or registered waste treatment or disposal sites recorded as being on site or within 500 m of the site boundary.

Industrial Land Use

- 5.9 There is one inactive contemporary trade directory relating to an Electrical Good Manufacturer detailed as being on site.
- 5.10 There are 61 contemporary trade directories detailed as being located within 500 m of the site boundary, 27 of which are detailed as being inactive. The remaining 34 active licences include industries such as dry cleaners, garage services, fabric manufacturers, car dealerships and garages, commercial and domestic cleaning services and photographic processing.
- 5.11 There are three fuel station entries recorded within 500 m of the site boundary. The 'Star Tottenham Lane' fuel station is approximately 309 m north east of the site and is recorded as 'Obsolete'. The 'Somerfield Crouch End' petrol station and the 'Shell Hornsey Park Road' petrol station are both recorded as being 'Open' and are located 393 m north east and 479 m north west of the site respectively.

6. Conceptual site model

- 6.1 A conceptual site model (CSM) has been developed for the site (presented as Figure 3) and is discussed below. It is based on the desk top information reviewed in the preparation of this report and in particular the historic and current land uses and published geological and hydrogeological mapping.
- 6.2 The CSM provides a qualitative evaluation of potential pollutant linkages at the site based on plausible contaminant source pathway receptor at the site:
 - i. potential sources of contamination: these include any actual or potentially contaminating materials and activities, located either on or in the vicinity of the site;
 - ii. potential pathways for contamination migration: these are the routes or mechanisms by which contaminants may migrate from the source to the receptor; and
 - iii. potential receptors of contamination: these include present or future land users, the environment or built environment.

Contamination Sources

- 6.3 From the information reviewed in this report a significant contamination source has not been identified at the site. In the 1850's the site was in use as an open field, and in 1863 small parts of the site were in use for residential dwellings and since 1895 up to current day the site has been occupied by a town hall and clinic (now no longer functioning as such), and in addition since 1963, a library.
- 6.4 Notwithstanding there is potential for localised contamination to be present associated within any made ground, as a result of the sites previous development, in particular inorganic contaminants, asbestos and soil gas generation.

Off site Sources

6.5 There is a small scale electricity sub station located adjacent to the north east boundary of the site which may have the potential to have resulted in localised impacts of the shallow ground with PCBs and oil fuel contamination, although the likelihood of this acting as a significant source of contamination at the site is low.

Environmental Pathways

6.6 Potential migration pathways are discussed below.

Airborne Migration Pathways

- 6.7 The particulate inhalation pathway is not expected to be relevant in those areas of the site that comprise hardstanding. The presence of hardstanding will effectively act as a barrier to the generation and migration of soil dust. This pathway will be active in areas of the site which comprise soft landscaping and also during the construction phase of the project, following hardstanding removal.
- 6.8 Both indoor and outdoor vapour inhalation pathways are potentially active in the current scenario. The vapour inhalation pathway is considered will be potentially active in the future development scenario, particularly the indoor pathway in areas of built structures.

Aqueous Migration Pathway

6.9 Published geology indicates the site is underlain by London Clay which directly overlays the Bagshot Formation (sands).

- 6.10 The significance of the underlying London Clay to support a significant groundwater table is assessed to be low based on its classification as a non aquifer.
- 6.11 A shallow perched groundwater table may be present associated with any made ground beneath the site. While horizontal movement of this shallow groundwater is not likely to be significant it is considered as a possible localised pathway for offsite migration.

Land Migration Pathway

- 6.12 The land migration pathway is not considered to be relevant in those areas of the site that will comprise hardstanding (albeit permeable paving in certain areas) as this will effectively act as a barrier to the future end user from dermal and ingestion pathways. The dermal and ingestion pathways are expected to be active in areas of soft landscaping proposed in any future development.
- 6.13 The land migration pathway will be potentially active during the construction phase of any future development.

Receptors

- 6.14 In the context of the site, the following potential receptors have been identified:
 - future users;
 - adjoining property;
 - built structures/ infrastructure; and
 - construction workers.
- 6.15 The potential source-pathway-receptor linkages identified at the site are summarised in Table 6.1 below.

Potential Receptor	Potential Source	Potential Pathway	Potential Pollutant Linkage
Current Users	Contaminated Soil	Particulate inhalation / dermal contact / ingestion	Yes
	Contaminated soil and groundwater	Vapour inhalation (indoor and outdoor)	Yes
Future Users	Contaminated Soil	Particulate inhalation / dermal contact / ingestion	Yes (only in areas of soft landscaping)
	Contaminated soil and groundwater	Vapour inhalation (indoor and outdoor)	Yes
Off Site - adjoining	Contaminated soil	Particulate inhalation	No
property	Contaminated soil and groundwater	Vapour inhalation (indoor and outdoor)	No
Built Structures / Infrastructure	Soil gas	Migration and vapour intrusion	Yes
Construction Workers	Contaminated soil and groundwater	Dermal contact / ingestion / particulate inhalation/ vapour inhalation	Yes

Table 6.1. Summary of Potential Pollutant Linkages

7. Site Investigation Works

- 7.1 A site investigation was undertaken between 5th June and 11th June 2009 by RSK STATS on behalf of Capita Symonds. This focused on the area in and around Hornsey Town Hall. A copy of the Geotechnical Report, dated September 2009 has been provided as Appendix 3.
- 7.2 The site investigation was undertaken to obtain information on the ground conditions in relation to historical and current movement of the existing structures onsite. The ground investigation was predominantly designed for geotechnical / structural purposes although select contamination samples were also collected during works.

Scope

- 7.3 The scope of works undertaken at the site has been outlined below, this is restricted to those exploratory holes from which contamination samples were taken, it excludes dynamic probes holes drilled purely for geotechnical purposes. Detailed information (contamination related only) per exploratory hole has been provided in table 7.1 below.
 - 4No. light cable percussive boreholes to a maximum depth of 30.0 m depth;
 - 8No. Trial Pits up to a maximum of 4.00 m depth; and
 - laboratory chemical testing of 16No. soil samples for common contaminants.

Exploratory Hole	Depth (m)	Contamination Suite	Ground water Encountered
BH 1A	30.00	Heavy Metals and Sulphate.	None encountered
BH 2	30.00	Heavy Metals and Sulphate	None encountered
BH 3	25.00	Heavy Metals, PAHs, TPH, Sulphate, MTBE	None encountered
BH4A	25.00	Heavy Metals and Sulphate	None encountered
TP 1	4.00	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 1A	1.30	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 2	5.00	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 3	0.89	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 4	3.00	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 5	2.00	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 6	3.00	Heavy Metals, PAHs, TPH, MTBE	None encountered
TP 7	3.00	Heavy Metals, PAHs, TPH, MTBE, SVOC	None encountered

Table 7.1 List of Exploratory Holes, Depth and Contamination Testing

Notes:

Heavy Metals -Boron, Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Zinc

PAHs – Poly Aromatic Hydrocarbons (Total 16 reported)

TPH – Total Petroleum Hydrocarbons (Aliphatics and Aromatics)

MTBE – Benzene, Toulene and Ethyl Benzene

SVOC and VOC - Semi Volatile Organic Carbons and Volatile Organic Carbons

7.4 No groundwater was encountered in any of the exploratory holes during the investigation at the site and no soil gas monitoring was undertaken.

Ground Conditions

7.5 The ground investigation undertaken at the site revealed it to be underlain by a variable thickness of Made Ground over Alluvium with London Clay at depth. This appears to slightly differ from the stratigraphical succession suggested by the published geological records, in that a thin layer of Alluvium is present across the site. The ground conditions identified at the site have been summarised in Table 7.2 below and all borehole logs are provided within Appendix 3 as part of the Geotechnical Report, September 2009.

Table 7.2 General succession of strata encountered						
Geology Depth to top of stratum m bgl Thickness (m)						
Made Ground	0.00	0.30 to 3.30				
Alluvium	0.68 to 0.74	0.26 to 0.32				
London Clay 0.30 to 3.30 Proven to 25.0						

7.6 In the majority of the exploratory holes, the Made Ground was identified to be only up to 0.30 m thick. The maximum thickness of Made Ground was encountered in BH4A located in the north west of the site.

8. Generic Risk Assessment

8.1 This section provides a generic quantitative risk assessment (GQRA) for Human Health of the available chemical laboratory results from the site investigation conducted in June 2009, and utilises the desk top information provided in the previous sections of this report in order to identify the significance of any potential pollutant linkages beneath the site.

Assessment Results of GQRA for Human Health

- 8.2 Capita Symonds' Human Health Generic Assessment Criteria (GAC) have been produced using CLEA v1.06 and were used for the purpose of soil assessment. A residential end use without plant uptake has been assumed. The GAC used are considered appropriate to assess risk to current and future site users.
- 8.3 Generic screening of soil chemical results has identified exceedances of GAC with respect to Human Health. Table 8.1 below summarises these exceedances. Full GAC screening tables are presented as Appendix 4.

Contaminant of Concern	No. of samples analysed	GAC (mg/kg)	No of Exceedances	Maximum Concentration (mg/kg)	Location of Exceedances
Chromium	14	37	8	62	Widespread
TPH aromatic >C21- C35	8	1300	1	1980	TP6 @ 0.25m (1980 mg/kg)
Naphthalene	8	7	1	9.08	TP4 @ 0.25m (9.08 mg/kg)
Benzo[a]anthracene	8	10	3	154	TP3 @ 0.5m (106 mg/kg), TP4 @ 0.25m (27.3 mg/kg), TP6 @ 0.25m (154 mg/kg)
Chrysene	8	100	2	149	TP3 @ 0.5m (102 mg/kg), TP6 @ 0.25m (149 mg/kg)
Benzo[b/k]fluoranthene	8	10	3	161	TP3 @ 0.5m (119 mg/kg), TP4 @ 0.25m (37.4 mg/kg), TP6 @ 0.25m (161 mg/kg)
Benzo[a]pyrene	8	1	3	107	TP3 @ 0.5m (73.8 mg/kg), TP4 @ 0.25m (24.5 mg/kg), TP6 @ 0.25m (107 mg/kg)
Indeno[1,2,3-cd]pyrene	8	10	3	85.6	TP3 @ 0.5m (59.5 mg/kg), TP4 @ 0.25m (22 mg/kg), TP6 @ 0.25m (85.6 mg/kg)
Dibenzo[a,h]anthracene	8	1	3	18.4	TP3 @ 0.5m (10.8 mg/kg), TP4 @ 0.25m (3.76 mg/kg), TP6 @ 0.25m (18.4 mg/kg)
Benzo[g,h,i]perylene	8	10	3	73.3	TP3 @ 0.5m (46.2 mg/kg), TP4 @ 0.25m (20.7 mg/kg), TP6 @ 0.25m (73.3 mg/kg)

Table 8.1. Summary of Soil Exceedances of Human Health GAC

- 8.4 A total of 16 soil samples have been assessed against the GAC and exceedances of chromium, aromatic hydrocarbons (>C21-35) and 8No. PAH species have been identified.
- 8.5 Chromium concentrations exceeded the Human Health GAC in 8 of 14 samples tested and at 6 of 8 exploratory locations. The Human Health GAC for chromium is considered to be overly conservative as it assumes 100% of the metal is the more toxic Chromium VI. The maximum concentration of Chromium tested is 62 mg/kg, which is not considered to be a significant exceedance when the presence of Chromium III is taken into account. The observed chromium exceedances of Human Health GAC are discounted for the purpose of this report.

- 8.6 Exceedances of aromatic hydrocarbons (>C21-35) and PAHs with respect to Human Health are recorded within the shallow made ground at locations TP3, TP4 and TP6. These positions are clustered in the south eastern corner of the current town hall boundary in the northern portion of the site and the exceedances may indicate an isolated contamination hotspot in this area. Bitumen, ash and clinker was observed to be present in the Made Ground at these locations.
- 8.7 Statistical analysis of the chemical data available for the site is not considered to be appropriate due to the limited number of samples and the clustered grouping of the sample locations.

Summary of Contamination Risk from GQRA

8.8 An assessment of the preliminary level of risk to the identified potential receptors is provided below in Table 8.2 based on the potential pollutant linkages identified within Table 6.1 and the assessment of available chemical data.

Potential Receptor	Potential Source	Potential Pathway	Preliminary Risk
Current Users	Contaminated Soil	Particulate inhalation / dermal contact / ingestion	Low to Moderate
	Contaminated soil and groundwater	Vapour inhalation (indoor and outdoor)	Low to Moderate
Future Users	Contaminated Soil	Particulate inhalation / dermal contact / ingestion	Low to Moderate
	Contaminated soil and groundwater	Vapour inhalation (indoor and outdoor)	Low to Moderate
Built Structures / Infrastructure	Soil gas	Migration and vapour intrusion	Low to Moderate
Construction Workers	Contaminated soil and groundwater	Dermal contact / ingestion / particulate inhalation/ vapour inhalation	Low to moderate

Table 8.2. Summary of the preliminary risk associated with Potential Pollutant Linkages

Current Users

8.9 The level of risk to current site users is assessed as **low to moderate**. A localised contamination source has been identified in the recorded Made Ground and is thought to be associated with bitumen, ash and clinker which was identified in these locations and is not considered to represent a significant source of contamination. Furthermore, a direct pathway to current site users in this part of the site has not been identified due to the current presence of hardstanding, which will reduce the significance of the dermal and ingestion pathway.

Future Users

8.10 The level of risk to future site users is assessed as **low to moderate**. The localised contamination source identified in the Made Ground is thought to be associated with recorded bitumen, ash and clinker at these locations and is not considered to be representative of a significant source of contamination at the site. Furthermore, the identified contamination is outside the proposed new development footprint and a direct pathway to future users is not present.

Built Structures / Infrastructure

8.11 The level of risk associated with soil gas generation and intrusion into any buildings associated with redevelopment has been identified as **low to moderate**. This assessment is based on the fact that although there is potential for the presence of contaminants and soil gas beneath the site associated with

the Made Ground, the Made Ground itself is relatively limited in thickness (generally half a metre) and therefore unlikely to be a significant source of soil gas.

Construction Workers

8.12 During future enabling and construction works at the site, construction workers may come into direct contact with areas of ground contamination. The level of risk is preliminary assessed as **low**, provided the appropriate level of mitigation is implemented. Mitigation would be expected to comprise as a minimum appropriate personal protective equipment and provision of this report within the site health and safety log.

9. Summary and Recommendations

- 9.1 A significant potential source of contamination has not been identified at the site based on the desk top review of available information. The site is recorded to have been in use as dwellings, town hall, clinic and library and these land uses are not considered have the potential to have resulted in significant contamination of the ground.
- 9.2 The exploratory ground investigation and generic quantitative risk assessment did identify one localised area of contamination in the north east area of the site. This contamination is thought to be associated with bitumen, ash and clinker that was recorded as being present in the shallow ground and is not thought to represent a significant source of below ground contamination. Furthermore, the identified contamination is outside the footprint of the proposed development and a direct pathway to future users has not been identified.
- 9.3 The sensitivity of controlled waters beneath and in the vicinity of the site is assessed to be low. The site is reported to be underlain by a non aquifer and the nearest recorded surface water feature is over 500 m from the site boundary.
- 9.4 In the absence of soil gas monitoring data and as a conservative assumption, there is potential for soil gas generation beneath the site. Notwithstanding, the likelihood is considered to be low on the basis of the limited thickness (generally 0.5m) of Made Ground encountered at the site.
- 9.5 At this stage, and on the basis of the above information, significant remediation works are not expected to be required to support future redevelopment of the site. Notwithstanding, and as a reasonable worst case scenario, it is recommended that some provision should be made for the requirement of standard remediation practices. This would commonly comprise localised soil source removal and / or cover layer materials in areas of soft landscaping.
- 9.6 To validate the findings of this report and support likely future planning requirements it is recommended that a further small scale intrusive ground investigation is undertaken across the site prior to construction commencing. The small scale investigation will target the areas of the site that are proposed to be redeveloped and provide confirmation of the level of risk to future site users and built structures. The suggested scope of works of the ground investigation is:
 - 6No. window samples up to 3 m bgl;
 - 4No. rounds of soil gas monitoring; and
 - shallow soil chemical testing for inorganic and organic contaminants including hexavalent chromium VI, total petroleum hydrocarbons and poly aromatic hydrocarbons.
- 9.7 An Interpretative Report and Remediation Strategy will be prepared on completion of the small scale ground investigation which will provide firm recommendations on the requirement for remediation to support the future development of the site.

Figures

Figure 1 Site Location Plan

Figure 2 Site Layout Plan

Figure 3 Conceptual Site Model

-10mm 0 10mm

CAD FILE NAME : F:\Environment\ZWET\CS026506_HornseyTownHall_FRA\CAD\Figure1.dwg

Γ	REV			DR	СН	PA	DATE	REV			DR	СН	PA	DATE
	THIS MAP IS RE © CROWN COP NOTE THE PROI	PRODUCED FROM YRIGHT. UNAUTHO PERTY OF THIS DF	I ORDNANCE SUR DRISED REPRODU RAWING AND DES	VEY MATERIAL W ICTION INFRINGE	/ITH THE I S CROWN I CAPITA S	PERMISS I COPYRI SYMONDS	ION OF OF GHT AND I S LIMITED	RDNANCE MAY LEAI AND MUS	SURVEY () TO PROS T NOT BE	ON BEHALF OF THE CONTROLLER OF HER SECUTION OR CIVIL PROCEEDINGS. 100048 COPIED OR REPRODUCED IN ANY WAY W	MAJEST 3730, 2010 ITHOUT 1	Y'S STAT 0. THEIR WE	IONERY	OFFICE
		H RE	ORNSE NAISSA	Y TOW	N H/ ROJ	ALL IECT	Г							
	FIGURE 1 SITE LOCATION PLAN					CAPITA SYMOND Capita Symond 52 Grosvenor Gardens, Victor Tel: +44 (0)02 7808 4520	Is Limite ia, Lone Fax: +	ed, don, SV 44 (0)2	NI 01W 0. 0 7901) AU 9901				
ITED DAT	DRAWN BY	CHECKED BY	PASSED BY	DATE 11/02/10	SCALES	s @ a3 s 50.00(ize iss 0	SUE STAT	us AL	DRAWING NUMBER CS026506/FIG	URE	Ξ1		REV.

-10mm 0

Appendices

Appendix 1 Development Plan

Appendix 2 - Landmark Envirocheck Report (see attached CD)

Appendix 3 - CSL Geotechnical Report, September 2009

Report for Capita Symonds

Geotechnical Report

Hornsey Town Hall, Hornsey

Report No. 240362 - 001 September 2009

© STATS Limited 2009

CONTENTS

		Page
1.	INTRODUCTION 1.1 Purpose of Investigation 1.2 Project Brief 1.3 Limitations	5 5 5 5
2.	SITE DETAILS 2.1 Site Location and Description 2.2 Historical Information	7 7 8
3.	GROUND INVESTIGATION 3.1 Site Work 3.2 Laboratory Testing	9 9 9
4.	GROUND CONDITIONS 4.1 Published Geology and Hydrogeology 4.2 Findings of Ground Investigation 4.2.1 General Succession of Strata 4.2.2 Made Ground 4.2.3 Alluvium 4.2.4 London Clay 4.3 Groundwater Results	10 10 10 10 10 11 11 11
5.	ENGINEERING CONSIDERATIONS 5.1 Details of Proposed Development 5.2 Geotechnical Hazards 5.3 Foundations 5.3.1 Existing Foundations and Possible Causes of Deformation 5.4 Possible Foundation Remediation Measures 5.4.1 Piled Foundations 5.5 Ground Floor Slabs 5.6 Retaining Walls 5.7 Roads and Hardstanding 5.8 Chemical Attack on Buried Concrete 5.9 Soakaways	13 13 14 14 14 15 16 16 17 18 19
6.	RECOMMENDATIONS 6.1 Recommendations for Further Geotechnical Work	20 20

FIGURES

- 1 Site Location Plan
- 2 Exploratory Point Location Plan
- 3 SPT 'N' Values against Depth/
- 4 Undrained Shear Strength against Depth
- 5 Natural Moisture Content against Depth
- 6 Plasticity Classification

APPENDICES

A Desk Study Information

Historical Maps and Photograph

B Fieldwork Records

Borehole Records Trial Pit Records CBR Location Records

C Geotechnical Laboratory Test Records

Moisture Content and Plasticity Index of Soil Triaxial Test Results

D Chemical Laboratory Test Records

Chemical Analysis of Soils including Sulfate and pH Analysis Test Results

DOCUMENT CONTROL

RSK STATS Limited 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT UK

Document Title: Geotechnical Report for Hornsey Town Hall, Hornsey, London.

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

The Client: Capita Symonds 1 Procter Street London WC1V 6DW

RSK STATS Limited (RSK) has prepared this report in accordance with the instructions of Capita Symonds ("the Client") by e-mail dated 27th March 2009 and under the terms of appointment for RSK STATS. This report is confidential and non-assignable by the Client and RSK STATS shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by RSK STATS in this connection without the explicit written agreement thereto by RSK STATS.

www.rsk.co.uk

1. INTRODUCTION

1.1 Purpose of Investigation

On the instructions of Capita Symonds Consulting Engineers, RSK STATS has carried out a ground investigation of the area in and around Hornsey Town Hall, Hornsey, London. The project was commissioned in order to obtain information on the ground conditions in relation to historical and current movement of the existing structures onsite.

1.2 Project Brief

The project was carried out to an agreed brief, as set out in RSK STATS proposal letter of 7th November 2008, and has included the following tasks:

Desk Study

- A study of local geology and hydrogeology
- The history of the construction of the site including the study of existing historical photographs and architectural drawings from the original building construction
- The identification of potential geological hazards

Site Investigation

- Sinking of 4 No. light cable percussive boreholes to a maximum of 30.0m depth.
- Sinking of 5 No. drive-in window sampler boreholes to a maximum of 4.5m depth.
- Excavation of 8 No. trial pits.
- Excavation of 6 No. pits to establish an insitu CBR value utilising the Clegg Hammer instrumentation.
- Associated sampling and on-site testing.
- Laboratory chemical testing of 15 soil samples for common contaminants.
- Laboratory screening of 6 samples of made ground for the presence of asbestos fibres.
- Laboratory geotechnical testing of soil samples for classification purposes.
- Interpretative reporting

1.3 Limitations

The opinions and recommendations expressed in this report are based on the ground conditions encountered during the site work, the results of field and laboratory testing and interpretation between exploratory holes. The material encountered and samples obtained represent only a small proportion of the materials present on-site, therefore other conditions may prevail at the site which have not been revealed by this investigation.

The investigation itself was designed generally to meet the objectives of an exploratory investigation, as defined by BS 10175:2001 Code of Practice for the Investigation of Potentially Contaminated Site. As an exploratory investigation, the results may not provide sufficient data

to make detailed estimates of the quantities involved in any remediation work, if required. An assessment and interpretation of contamination issues onsite was outside the agreed scope of works.

The results of RSK STATS laboratory tests are covered by UKAS accreditation, but opinions and interpretations expressed in the report and on the site work records are outside the scope of this accreditation. Where laboratory testing has been carried out at a sub-contractor laboratory, this laboratory is an approved sub-contractor in accordance with the requirements of RSK STATS' quality management system and is UKAS accredited for the relevant range of tests undertaken.

2. SITE DETAILS

2.1 Site Location and Description

The site, which may be located by National Grid reference 530221^E, 188348^N is situated within the Hornsey area of North London. An extract of the 1:50 000 Ordnance Survey map showing the location of the site is included in **Figure 1**.

The site currently comprises a number of buildings of mainly commercial use; storage, offices, training areas and exhibition/theatre halls. The area around the site is generally low lying, however not within the urbanised flood plain of the River Thames or any other locally present water courses.

The characteristics of the site observed during the site reconnaissance visit and obtained from current Ordnance Survey maps are summarised in **Table 2.1**.

Feature	Description				
Physical characteristics					
Area of site	Approximately 0.5 hectares.				
Ground levels	The site is essentially level with a few raised areas of soft landscaping.				
Depressions in the ground surface	None observed.				
Waterlogged or marshy ground	None observed.				
Surface water	There are no streams or drainage ditches on or adjacent to the site.				
Flood risk	The indicative floodplain map for the area, published by the Environment Agency, shows that the site does not lie within the predicted (1 in 100year) flood plain of the River Thames. Therefore the site is not considered to be susceptible to fluvial flooding.				
Trees and hedges	Trees are present on site as shown on the site plan in Figure 2.				
Existing buildings on site	The site contains a number of two to three storey buildings. Basements are present on site beneath the theatre area of the main town hall building.				
Basements on site	Basements are present beneath the theatre area of the main town hall building.				
External hardstanding	Essentially the entire site is covered by buildings and areas of external hard cover, however there are small portions of the site that are covered with minimal soft landscaping.				
Retaining walls and adjacent buildings on or close to site boundary	Retaining walls will be present around the perimeter of the basement.				
Made ground, earthworks and quarrying	None observed.				
Potentially unstable	None observed.				

Table 2.1 – Site Description

Feature	Description
slopes on or close to site	
Buried services present	There are a number of manhole covers on site.

2.2 Historical Information

Architectural drawings and photographs provided by the client give an indication of the type and depth of foundations adopted for the site. However details as to the exact dimensions of individual pad foundations are not clear. It is apparent from the information provided that the building is of a steel frame construction incorporating brick cladding with an approximately 250mm thick ground bearing floor slab. It is understood that this information along with observations made onsite has been used by the client to plan the investigation.

Historical photographs made available onsite at the time of investigation shed some light as to the original foundation solutions and construction methods adopted. Although not fully conclusive the historical photographic records do indicate that areas of the site were subject to some degree of enabling groundworks, possible making up of ground levels in the area of the historic pond. The historic pond, as indicated on historical maps circa 1915, appears to have underlain the central northern theatre portion of the Town Hall building however the accuracy of the historical maps cannot be wholly relied upon.

3. GROUND INVESTIGATION

3.1 Site Work

The main site work was carried out between 5th June to the 11th June 2009 comprised the activities summarised in **Table 3.1**. The exploratory hole logs and other site work records, as listed in the Contents, are presented in **Appendix B**.

Investigation Type	Number	Location/ Designation
Boreholes - by light cable percussive methods	4	BH1A to BH4A
Boreholes – by drive-in-sampler methods	5	TP1, TP1A, TP2, TP6 and TP7.
Trial Pits - excavated by hand	5	TP1, TP1A, TP2, TP3, TP6 and TP7.
Trial Pits - excavated by mechanical excavator	2	TP4 and TP5
In situ Clegg Hammer testing	7	CBR1 to CBR7

Table 3.1 Summary of ground investigation site work activities

The investigation points were located approximately by reference to physical features present on the site at the time of investigation. The ground levels at the borehole locations have not been determined.

3.2 Laboratory Testing

A programme of geotechnical and chemical laboratory testing, scheduled by RSK STATS and approved by Captia Symonds (chemical testing only), was carried out on selected samples taken from various strata. The laboratory results, as listed in the Contents, are presented in **Appendices C** and **D**, respectively.

No assessment of the chemical testing undertaken onsite has been carried out as this was outside the agreed scope of works.

4. **GROUND CONDITIONS**

4.1 Published Geology and Hydrogeology

The published 1:50,000 scale geological map of the area (Sheet No 256 "North London") indicates that the site is underlain by London Clay.

The existing topography and history of development of the site suggests that in addition to these natural strata made ground may be present on the site.

Based on the published geological map referred to above, the hydrogeology of the site is likely to be characterised by the presence of a non-aquifer comprising the London Clay. However it is possible that localised perched water may also be present in the made ground.

4.2 Findings of Ground Investigation

4.2.1 General Succession of Strata

The exploratory holes revealed that the site is underlain by a variable thickness of made ground over Alluvium with London Clay at depth This appears to contradict the stratigraphical succession suggested by the published geological records. For the purpose of discussion, the ground conditions are summarised in **Table 4.1** below.

Brief Description	Depth to top of stratum m.bgl	Thickness (m)
Made Ground	0.00	0.30 to 3.30
Alluvium	0.68 to 0.74	0.26 to 0.32
London Clay	0.30 to 3.30	Proven to 25.0

Table 4.1 General succession of strata encountered

4.2.2 Made Ground

The exploratory holes encountered a variable thickness of made ground across the site ranging from 0.30 to 3.30m. The maximum thickness of made ground is typically encountered within BH4A.

In general the made ground comprises tarmacadem, over concrete which further overlies a variable mix of cohesive and granular materials. The cohesive portion, generally comprises brown, occasionally black, red sand and gravel with fine to coarse sand and fine to coarse angular to subrounded flint, brick and concrete gravel. The cohesive portion generally comprises brown/dark brown/dark grey sandy gravelly reworked clay with fine to coarse sand and fine to coarse sand and fine to coarse angular to subrounded flint, brick, bitumen and concrete gravel. Some cobbles of angular concrete and brick were present.

The presence of roots was noted in SA1 only, however there is no evidence to suggest that the made ground is desiccated.

The measured and inferred soil parameters for the stratum are listed in **Table 4.2** below.

Table 4.2 Summary of Soil Parameters for Made Ground

Soil Parameters	Range	Results

Soil Parameters	Range	Results
Moisture Content (%)	19	Figure 5
SPT 'N' Values	2 to 20	Figure 3
Undrained Shear Strength (kN/m ²) measured by Shear Vane	62 to 69	Figure 4

4.2.3 Alluvium

The Alluvium typically only encountered within the north west portion of the site comprised a dark grey/black clayey SILT with roots and rootlets and a strong organic aroma and could be evidence of the former pond within northern portion of the site.

Although roots and rootlets were encountered within CBR1 and CBR3 no evidence exists to suggest the Alluvium is desiccated.

4.2.4 London Clay

The London Clay typically comprised a firm to hard brown/dark brown/grey silty CLAY with abundant fine selenite crystal gravel.

The measured and inferred soil parameters for the stratum are listed in **Table 4.4** below.

Soil Parameters	Range	Results
Liquid Limit (%)	73 to 76	Appendix B
Plastic Limit (%)	29 to 35	Appendix B
Plastic Index (%)	41 to 45	Appendix B
Modified Plasticity Index (%)	41 to 45	
Plasticity Term	Very High Plasticity	Figure 6
Volume Change Potential (NHBC)	High	
Moisture Content (%)	21 to 33	Figure 5
SPT 'N' Values	8 to 116	Figure 3
Undrained Shear Strength (kN/m ²) measured by Shear Vane	42 to 89	Figure 4
Undrained Shear Strength (kN/m ²) measured by Triaxial Testing	35 to 248	Figure 4
Undrained Shear Strength (kN/m ²) inferred from SPT 'N' values	34 to >300	Figure 4
Strength Term	Firm to Hard	

 Table 4.4 Summary of Soil Parameters for London Clay

4.3 Groundwater Results

Groundwater seepage was observed in trial pits TP5, reflecting the presence of localised perched groundwater in the made ground soils in the vicinity off this trail pit location. Other then this no ground water was encountered during the investigation.

It should be noted that groundwater levels might fluctuate for a number of reasons including seasonal variations. On-going monitoring would be required to establish both the full range of conditions and any trends in groundwater levels.

5. ENGINEERING CONSIDERATIONS

5.1 Details of Proposed Development

It is understood that this investigation will form part of a study commissioned to establish the reasons behind the distortions currently influencing the town halls structural integrity. It is proposed to stabilise the existing structures using some form of underpinning given that the Town Hall is listed rather than using a demolition and reconstruction approach.

5.2 Geotechnical Hazards

A summary of commonly occurring geotechnical hazards is given in **Table 5.1** together with an assessment of whether the site may be affected by each of the stated hazards.

Hazard category	Haza	rd status b	based on	Engineering considerations
(excluding containination	nron	osed devel	opment	
	Found to be present on site	Could be present but not found	Unlikely to be present and/or affect site	
Sudden lateral changes in ground conditions			1	Likely to affect ground engineering and foundation design and construction
Shrinkable clay soils	1	London Cla High Shrir	ay Deposits with Ikage Potential	Design to NHBC Standards Chapter 4 or similar
Highly compressible and low bearing capacity soils, (including peat and soft clay)			5	Likely to affect ground engineering and foundation design and construction
Silt-rich soils susceptible to rapid loss of strength in wet conditions		1		Likely to affect ground engineering and foundation design and construction
Running sand at and below the water table			1	Likely to affect ground engineering and foundation design and construction
Karstic dissolution features (including 'swallow holes' in Chalk terrain)			1	May affect ground engineering and foundation design and construction
Evaporite dissolution features and/or subsidence			1	May affect ground engineering and foundation design and construction
Ground subject to or at risk from landslides			1	Likely to require special stabilisation measures
Ground subject to peri-glacial valley cambering with gulls possibly present			1	Likely to affect ground engineering and foundation design and construction
Ground subject to or at risk from coastal or river erosion			1	Likely to require special protection/stabilisation measures
High groundwater table (including waterlogged ground)			1	May affect temporary and permanent works
Rising groundwater table due to diminishing abstraction in urban area			1	May affect deep foundations, basements and tunnels
Underground mining			1	Likely to require special

Table 5.1 Summary of main potential geotechnical hazards that may affect site

Hazard category (excluding contamination issues)	Hazard status based oninvestigation findings andproposed developmentFound toCould beUnlikely tobepresentbepresent			Engineering considerations if hazard affects site
	present on site	but not found	and/or affect site	
				stabilisation measures
Existing sub-structures (e.g. tunnels, foundations, basements, and adjacent sub- structures)	5	Basements to existing Hornsey Town Hall		Likely to affect ground engineering and foundation design and construction
Filled and made ground (including embankments, infilled ponds and quarries)		✓		Likely to affect ground engineering and foundation design and construction
Adverse ground chemistry (including expansive slags and weathering of sulphides to sulphates)	5	London Clay		May affect ground engineering and foundation design and construction

Note: Seismicity is not included in the above Table as this is not normally a design consideration in the UK.

5.3 Foundations

5.3.1 Existing Foundations and Possible Causes of Deformation

Based on the trial pitting undertaken, see **Appendix B**, to date it is clear that the building is supported on pad foundations as indicated on the client supplied drawing from the Borough of Hornsey Engineer and Surveyors Department number 10422A dated 2nd August 1934. In addition an approximately 250mm thick concrete layer was encountered which is possibly the edge of the ground bearing floor slab also shown on the above drawings.

The dimensions of the foundation pads, derived from observations made onsite and from the architectural drawings provided, would appear to range from 1.0 to 2.5m square. Based on this and the shear strength data obtained from the London Clay deposits at the foundation levels an allowable bearing pressure of in the order of 120 kN/m² can be relied upon. It should be noted that however information for the northern portion of the site specifically along the northern wall to the Town Hall building is limited. It is possible that weaker soils associated with the former pond may be present at this location which would result in a reduced bearing capacity than that provided above.

The presence of trees onsite raises questions as to whether building movement is a result of swell or shrinkage of the underlying high plasticity clay soils. It is worth noting that building movement has occurred within areas not affected by locally present trees and consideration should therefore be given to assessing the impact of the trees present along northern boundary when assessing the foundations within this area.

5.4 Possible Foundation Remediation Measures

Information collated to date suggests that the foundations exposed onsite are not thought to require immediate remedial action. However, it must be highlighted that the bearing pressures provided above are based on the known ground conditions and generic foundation dimensions. Remedial measures maybe required if the loads being applied by the existing structure exceed those indicated above.

As no information exists for the northern portion of the site it is difficult at this stage to establish whether or not the existing foundations or ground conditions are impacting on

building movement. If further investigative works highlight any problems associated with this portion of the site then remediation measures may comprise:

- Traditionally Excavated Underpinning
- Base and Beam
- Conventional Piled with Needles and/or Beams
- Cantilever Piled Needles and Beams
- Pin Pile and Grout
- Stitch Piling
- Building Lifting and Levelling

Information from a specialist subcontractor should be sought to establish the most suitable method of foundation remediation.

5.4.1 Piled Foundations

Although the need for remedial works has not yet been proven some typical working loads of piled underpinning foundations in relation to the ground conditions are set out in **Table 5.2**.

Design/construction considerations	Design/construct	ion recommendations		
Pile type	The construction of bored piles is considered technically feasible at this site.			
Possible constraints on choice of pile type	Given the nature of the underpinning operation required the use of driven piles may not be acceptable due to ground vibration and noise related problems.			
Hard strata	An allowance should be made for the presence of thin 'rock' bands (claystone) within the London Clay Formation as identified within BH2 at depths of 9.30 and 21.60m.bgl.			
Soil and pile design	Adhesion Factor (a)	0.6		
Clay (cohesive soils)	Bearing Capacity Factor (N _c)	9		
	Undrained Shear Strength (c _u)	$60 + 7.5z \text{ kN/m}^2$ where $z = \text{depth into}$ clay		
	Global Safety Factor	3.0		
	Limiting Shaft Friction	110 kN/m ²		
	Limiting Concrete Stress	7.5N/mm ²		
Bored pile shafts and bases	Bored pile concrete should be cast as soon after the completion of boring a possible and in any event the same day as boring.			
	Prior to casting the base of the pile bore should be clean otherwise a reduced safe working load will be required. Similarly, if the pile bore is left open the shaft walls may relax/soften, leading to a reduced safe working load.			

Table 5.2 – Design and Construction of Piled Underpinning Foundations

The design procedure for piles varies considerably, depending on the proposed type of pile. However, for illustrative purposes **Table 5.3** gives likely working pile loads for traditional bored, cast-in-situ concrete piles of various diameters and lengths, based on the design parameters given in **Table 5.2**.

Alsting i currations						
Typical Pile Working Loads (kN)						
Depth of pile below	Pile Diameter					
existing foundation level assumed to be approximately 1.20m.bgl (m)	200mm	250mm	300mm	450mm	600mm	
7.5	94	121	149	242	348	
10.0	135	173	212	340	482	
12.5	182	232	284	451	634	
15.0	235	299	365	575	804	

Table 5.3 – Illustration Of Typical Pile Working Loads For Bored Cast-In-Situ Piles Below Existing Foundations

NB: Pile design parameters refer to ground conditions below the existing building. Further works will be required should the above design loads be applied to portions of the site not previously investigated.

5.5 Ground Floor Slabs

The sub-grade soil conditions beneath the existing building typically comprise a variable thickness of predominantly granular made ground over locally present Alluvium and firm London Clay.

The ground conditions encountered within the vicinity of the existing building do not appear suitable for the construction of a ground bearing floor slab, it is therefore recommend that consideration should be given to a suspended floor slab option.

5.6 Retaining Walls

Foundation remediation of the structure present onsite may require future alternations to the existing basement levels. The ground conditions likely to be encountered include a variable thickness of made ground overlying locally present Alluvium and London Clay.

The following soil parameters in **Table 10.5** overleaf are recommended for preliminary retaining wall design purposes.

Soil Type	SPT N V	Unit Woight	Short Charact	Term teristics	Long Term Strength Characteristics	
Son Type	Value	(kN/m ³)	c _u (kN/m²)	Ø' (°)	c' (kN/m²)	Ø' _{crit} (⁰)
Made Ground – Silty Clay	2	18	30	0	0	25
Made Ground – Sandy Gravel and Gravelly Sand	N/A	18	N/A	0	0	34
Alluvium	-	16	30*	0	0	23**
London Clay	8 to 23	19	33 + 7.5 z kN/m ²	0	0	25

 Table 10.5 Preliminary retaining wall parameters

*Shear strength inferred from CBR results.

**Estimated value, further testing required if relied upon for basement design purposes.

No groundwater was encountered during the excavations. However, the retaining wall design should make some allowance for hydrostatic pressures acting behind the walls, unless effective drainage measures can be ensured.

Consideration should be given to the presence of various types of vegetation along the northern site boundary and specifically the adverse effects of trees and root penetration may have on the existing structure and joints or drainage systems.

5.7 Roads and Hardstanding

In the 1.0m below the proposed finished ground level the exploratory holes have revealed a soil profile comprising Made Ground with locally present Alluvium and London Clay at depth. The potentially poorest sub-grade material within this profile is the Alluvium.

In pavement design terms, the groundwater conditions are anticipated to comprise a low water-table, i.e. at least 1m below the pavement formation level.

The results of in situ Clegg Hammer testing are summarised in Table 5.4.

Table 5.4 Summary of CBR values derived from in situ Clegg Hammer tests	able 5.4 Summar	d from in situ Clegg Hammer tests	
---	-----------------	-----------------------------------	--

Test Location	Test Depth	Material Type	Minimum CBR value determined at or just below anticipated formation level
CBR1	0.38	Made Ground	4
CBR1	0.54	Made Ground	>15
CBR1	0.62	Made Ground	15
CBR1	0.74	Alluvium	2
CBR1	0.88	Alluvium	2
CBR1	0.92	Alluvium	3
CBR2	0.10	Made Ground	>15
CBR2	0.29	Made Ground	>15
CBR2	0.37	Made Ground	>15
CBR2	0.53	Made Ground	>15
CBR2	0.60	Made Ground	>15
CBR2	0.70	Made Ground	6
CBR2	0.85	Made Ground	5
CBR3	0.18	Made Ground	>15
CBR3	0.34	Made Ground	>15
CBR3	0.50	Made Ground	9
CBR3	0.60	Made Ground	6
CBR3	0.72	Alluvium	3
CBR3	0.95	Alluvium	>15*
CBR4	0.20	Made Ground	3
CBR4	0.30	Made Ground	4
CBR4	0.46	London Clay	4
CBR4	0.59	London Clay	5
CBR4	0.70	London Clay	4

Test Location	Test Depth	Material Type	Minimum CBR value determined at or just below anticipated formation level
CBR4	0.85	London Clay	4
CBR5	0.20	Made Ground	9
CBR5	0.32	London Clay	4
CBR5	0.40	London Clay	4
CBR5	0.50	London Clay	4
CBR5	0.66	London Clay	5
CBR5	0.78	London Clay	4
CBR5	0.87	London Clay	5
CBR6	0.15	Made Ground	6
CBR6	0.25	Made Ground	7
CBR6	0.34	Made Ground	10
CBR6	0.47	Made Ground	10
CBR6	0.59	London Clay	10
CBR6	0.70	London Clay	9
CBR6	0.90	London Clay	12
CBR7	0.30	Made Ground	10
CBR7	0.44	Made Ground	5
CBR7	0.59	London Clay	3
CBR7	0.68	London Clay	2
CBR7	0.76	London Clay	2

* Possible concrete obstruction.

The recommended sub-grade soil CBR value for road pavement design therefore depends on the surface material, 5% for made ground, 2% for Alluvium and 3% for London Clay. This value assumes that during construction the formation level will be carefully compacted and any soft spots removed and replaced with well compacted granular fill.

The sub-grade soils can be regarded as non-frost-susceptible, after the criteria given in Appendix 1 of TRRL Report Road Note 29 (1970). When the sub-grade is frost-susceptible the thickness of subbase must be sufficient to give a total thickness of non-frost-susceptible pavement construction over the soil of not less than 450mm.

5.8 Chemical Attack on Buried Concrete

The results of chemical tests carried out on soil samples indicate 2:1 water soil extract sulphate contents of up to 3.4g/l with generally near neutral pH values.

These results indicate that, in accordance with BRE Special Digest 1: 2005 *Concrete in aggressive ground*, the Aggressive Chemical Environment for Concrete (ACEC) Classification is **AC-4** with a Design Sulfate Class for the site of **DS-4**. This assumes nominally mobile groundwater conditions and that no significantly disturbed clay comes into contact with concrete foundations or structures.

If significantly disturbed clay is likely to come into contact with concrete foundations or structures it will be necessary to carry out additional tests on the soil to investigate its total potential sulphate content. This will facilitate a revaluation of the ACEC Classification and

Design Sulfate Class for the material, to take into consideration potential oxidation of available sulphides (e.g. pyrite), as defined in Table C2 (natural ground sites) or C3 (brownfield sites) BRE Special Digest 1: 2005.

5.9 Soakaways

The ground conditions encountered onsite do not appear suitable for the use of shallow pit soakaways within the London Clay.

6. **RECOMMENDATIONS**

6.1 Recommendations for Further Geotechnical Work

Due to the lack of information pertaining to the ground conditions and foundations for the northern facing portion of the Town Hall building it is recommended the following is undertaken:

- Foundation trial pit excavations either by hand or mechanical excavator if access is restricted to below the base of any existing pad foundations.
- Follow on window sampling at these locations to further establish the underlying geology and obtain insitu strength data.
- Geotechnical testing to classify the underlying geology.
- Review influence of tress on existing foundations using NHBC Standards.

FIGURES

Sheet 1 of 1

APPENDIX A

Desk Study

Site:	Hornsey Town Hall		Client:	Capita Symonds	
Source:	Clent		Scale:	NTS	
STA	rs	HISTORICAL PH	OTOGRAF	Job No: 240362	2/001
				Fig No:	

a the second a second second 8 8 80

APPENDIX B

Fieldwork Records

Site: Horn	Sey To	IS own Ha	Speci and	ialist Engir Environme	eering ental C	g, Mater Consulta	rials ants	BOR (Perc) Location: Hornsey	EHOLE ussive)	RECORD	Boreh Numk BH1	nole ber: A
Clien	it:							Ground Le	evel:	Date:	Job No:	
Capit	ta Sym	onds						GL not me	easured	8 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	S/TEST	S			STRATA RE	ECORD	Sheet 1	of 3
Strike	Well	Depth	Depth/Type	SPT 'N' or U Blows	Depth	Level		Кеу	Description			
			()		0.10	(0.10	XXXX	MADE GROU	ND: Tarmacadem Hardst	anding.	
		-			0.40		0.30		MADE GROU	ND: Concrete with reinfor	cement.	
		-	0.70 D 1		-				Firm becoming brown silty CL	g stiff below 6.50m, close .AY. (LONDON CLAY)	ly fissured	
		-1						<u>^×</u>				
		-			-			<u>×— </u>				
		-	1.70 D 2		-			<u>× × -</u>				
		-2	1.90 D 3	s⊤	-							
		_		N=10	-			××				
		-		[2,0](2,2,2,4)	-			<u>× </u>				
		2	2.80 D 4		-			××				
		5	3.00 0 10		-			<u> </u>				
		-	3.50 D 5					<u> </u>				
		_	3.80 D 6		-			<u></u>				
		-4		s_	-							
		-		⊥_N=17 [5,0](3,4,4,6)				<u></u>				
		_	480 D 7		-		8.60					
		-5	5.00 D 19					<u>^×</u>				
		-			-			<u>××</u> - ××				
		-	5.50 D 8		-			×				
		-6			-			××				
					-			××				
		-	6.50 D 9	s_	-			<u>×_^×</u>				
		-		N=27 [5,0](5,7,7,8)	-			<u> </u>				
		-7						<u> </u>				
		-			-			<u> </u>				
		-			-							
		-8						<u></u>				
		-			-							
		-	8.50 D 10		-			<u>^×</u>				
		-9	9.00 D 11		9.00-			<u>^x</u>				
					-				Stiff becoming fissured dark	g very stiff below 15.50m, grey silty CLAY. (LONDO	closely N CLAY)	
		-		s—				××				
				N=27 [8,0](5,6,8,8)	-			××	Continued ne	ext sheet		
Rema Borebo	arks ar	d in 150	er Observa	tions ed to 1.50m	No water	added N	lo ins	tallation. No o	roundwater encou	ntered.	Scale:	1:50
_ 0.010											Logged by:	ADJT
											Figure:	

S	FA	rs	Speci and	alist Engin Environme	eering ental C	g, Materia Consultan	BOR (Perc	EHOLE ussive)	RECORD	Borel Numb	nole ber:
Site: Horn	isey To	wn Ha	all				Location: Hornsey		-	BH1	Α
Clier	nt:						Ground L	evel:	Date:	Job No:	
Capi	ta Sym	onds	i				GL not m	easured	8 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	/TEST	s		STRATA RI	ECORD	Sheet 2	2 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
		11 12 13 14 15 16 17 18	10.50 D 12 12.50 D 13 14.00 D 20 14.50 D 14 15.00 D 15 16.50 D 16 17.50 D 17	$S = \sum_{\substack{N=28 \\ [9,0](5,7,7,9)}} S = \sum_{\substack{N=39 \\ [12,0](7,9,10,13)}} S = \sum_{\substack{N=43 \\ [13,0](8,10,12,13)}} S$		21.0		Continued n	ext sheet		
Rem	arks an	d in 150	er Observat	tions			nstallation No a	roundwater encou	intered	Scale:	1:50
Buren		u 111 1901		-u to 1.50M. N	vo water	auueu. NO I	istaliation. NO g	rounuwater encou		Logged by:	ADJT
									-	Figure:	

S	TA	I S	Speci and	alist Engir Environme	neering ental C	g, Materia Consultar	als nts	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	nole ber:
Site: Horn	isey To	wn Ha	all					Location: Hornsey			BH1	Α
Clien	nt:							Ground L	evel:	Date:	Job No:	
Capi	ta Sym	onds						GL not me	easured	8 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	S/TEST	s			STRATA RE	ECORD	Sheet 3	3 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
	weil	21 22 23 24 24 25 26 27 28	(m)	S = 1 IN or U Blows $S = 1 In$ $S = 1$	(m)	Lever (mAOD)			Description			
		-						<u> </u>		,		
Rema Boreh	arks an	d in 150r	er Observat nm tools. Cas	tions ed to 1.50m. N	No water	added. No	inst	tallation. No a	End of Borel roundwater encou	nole at 30.00 m ntered.	Scale:	1:50
											Logged by:	ADJT
											Figure:	

ភា	FA	rs	Spec and	ialist Engir Environme	neerin ental C	g, Matel Consulta	rials ants	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	nole per:
Site: Horn	sey To	own Ha	all					Location: Hornsey			BH2	
Clien	it:							Ground Lo	evel:	Date:	Job No:	
Capit	ta Sym	nonds						GL not me	easured	9 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	S/TEST	S			STRATA R	ECORD	Sheet 1	of 3
Strike	Well	Depth (m)	Depth/Type	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
		-			0.20 -		0.20	XXXX	MADE GROU	ND: Tarmacadem Hardst	anding.	
		1 2 3 4 5 6 7	1.40 D 21 1.50 D 22 2.40 D 22 2.50 D 36 3.00 D 24 3.50 D 25 4.40 D 26 4.50 D 35 5.00 D 27 5.90 D 28 7.50 D 40	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	0.50		5.40		MADE GROU clayey GRAV fine to coarse bitumen, flint i Soft becoming brown silty CL	IND: Dark brown/dark gre EL. Sand is fine to coarse angular to subangular bri and concrete. g firm below 3.50m, closel AY. (LONDON CLAY)	y sandy slightly . Gravel is ck, y fissured	
		-9	8.90 D 25 9.00 D 30) S 	9 30 -							
		- - -		[7,0](5,6,26,53)			0.50	$\begin{array}{c} \times \times \times \times \times \times \times \times \times \\ \times \times \times \times \times \times \times \times \times $	Hard light gre	y/grey SILTSTONE.		
		F	9.90 D 31	-	9.80 - 9.90 -		0.10		Continued n	ext sheet		
Boreho	arks ar	nd Wat	er Observa mm tools. Cas	tions sed to 1.50m. N	No wate	r added. N	lo ins	stallation. Chise	eled from 9.30 to 9	9.80 and	Scale:	1:50
21.60	to 21.80	m. No gi	roundwater er	countered.							Logged by:	ADJT
											Figure:	

Site: Horn	TA sey To	IS own Ha	Speci and	alist Engin Environme	eering ental C	g, Materia Consultan	BOR (Perc Location: Hornsey	EHOLE ussive)	RECORD	Boreh Numb BH2	nole ber:
Clien	nt:						Ground L	evel:	Date:	Job No:	
Capi	ta Sym	onds					GL not m	easured	9 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	/TEST	S		STRATA R	ECORD	Sheet 2	2 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
Strike	Well	Depth (m) 11 12 12 13 14 15 16 16 17 18	Depth/Type (m) 10.40 D 32 10.50 D 34 11.90 D 33 15.00 D 34 16.50 D 42 17.00 D 35 18.00 D 36	SPT 'N' or U Blows S 	Depth (m)	Level (mAOD)	Key X. X. X. X. <td>Description 9.80m - 9.90n CLAY. (LONE 9.90m - 21.60 silty CLAY. (L</td> <td>n : Closely fissured brown OON CLAY) m : Stiff closely fissured d ONDON CLAY)</td> <td>silty ark grey</td> <td></td>	Description 9.80m - 9.90n CLAY. (LONE 9.90m - 21.60 silty CLAY. (L	n : Closely fissured brown OON CLAY) m : Stiff closely fissured d ONDON CLAY)	silty ark grey	
		-									
		-						Continued n	ext sheet		
Rema Boreh	arks an	d in 150	er Observat mm tools. Case	t ions ed to 1.50m. N	lo water	added. No	installation. Chis	eled from 9.30 to 9	9.80 and	Scale:	1:50
21.60	to 21.80r	m. No gr	oundwater end	countered.						Logged by:	ADJT
										Figure:	

S	FA	rs	Speci and	alist Engir Environme	neering ental C	g, Mater Sonsulta	rials ants	BOR (Perc	EHOLE ussive)	RECORD	Borel Numb	nole ber:
Site: Horn	sey To	own Ha	all					Location: Hornsey			BH2	
Clien	it:							Ground L	evel:	Date:	Job No:	
Capit	ta Sym	onds						GL not me	easured	9 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	S/TEST	S			STRATA RE	ECORD	Sheet 3	3 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
		-21	21.50 D 37	S 	21.60 - 21.80 -		0.20		Hard light grey Very stiff close (LONDON CL	y/grey SILTSTONE. (LON ely fissured dark grey silty AY)	DON CLAY) CLAY.	
		-23	23.00 D 43									
		-25		S 	(5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7							
		-26 -27	26.00 D 44	s⊤			8.20					
		-28 -28 -29		LN=58 [16,0](12,15,15,1	6)							
				SN=63 [12,0](14,15,16,1	8) -			× _				
Rema Boreho	arks ar	nd Wat	er Observa mm tools. Cas	tions ed to 1.50m. I	No watei	r added. N	lo ins	stallation. Chise	End of Boreh eled from 9.30 to 9	ore at 30.00 m 0.80 and	Scale:	1:50
21.601	to 21.80	m. No gr	oundwater en	countered.							Logged by:	ADJT
											Figure:	

ភា	FA	rs	Speci and	alist Engir Environme	neering ental C	g, Mate Sonsult	rials ants	BOR (Perc	EHOLE ussive)	RECORD	Borel Numb	nole ber:
Site: Horn	sey To	own Ha	all					Location: Hornsey			BH3	
Clien	t:							Ground L	evel:	Date:	Job No:	
Capit	ta Sym	nonds						GL not m	easured	11 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	S/TEST	S			STRATA RE	ECORD	Sheet 1	l of 3
Strike	Well	Depth	Depth/Type	SPT 'N' or U Blows	Depth	Level		Key	Description			
		-	()		0.04 -	(111/102)	0.04 0.17	XXXX	MADE GROU	ND: Tarmacadem Hardsta	inding.	
		-			0.35		0.14	××××× ×	MADE GROU	ND: Concrete.		/
		-			-			<u>x</u> x	MADE GROU slightly gravel	ND: Dark grey/black orgar ly silty CLAY. Gravel is find	nic rich e to	/
		-1							coarse angula	ar to subangular brick and rare cobbles of brick.	bitumen.	/
		-	1.20 D 53		-			<u>~ </u>	Firm becomin	g stiff below 6.50m, closely	/ fissured	
		-						<u>×— </u>		AT. (LONDON CLAT)		
		-2		s-	-							
		-		N=11	-			××				
		-		[2,0](2,3,3,3)	-			××				
					-			××				
		-3			-			<u> </u>				
		-	3.50 D 45		-							
		-			-			<u> </u>				
		-4		s_				XX				
		-		N=12 [3,0](2,3,3,4)	-							
		-			-			<u>~</u>				
		-5	4.80 D 46 5.00 D 54		-			<u> </u>				
		-			-		9.85	××				
		-			-			××^				
					-			××				
		-6						××				
		-	6.50 D 47	s⊤	-			 				
		-		N=26	-							
		-7		[10,0](6,6,7,7)				××				
		-			-							
		-			-			^				
		-8			-			<u>~</u>				
		-			-			<u> </u>				
		- -										
		-9										
		- -	9.50 D 48	s _T				××				
		-		N=31				×—×	0			
Rema	arks ar	nd Wate	er Observa	19,01(6,7,7,11) tions					Continued ne	ext sheet	Scale:	1.50
Boreho	ole drille	d in 150r	mm tools. Cas	ed to 1.50m. I	No wate	radded. N	No ins	stallation. No g	roundwater encou	ntered.		1.50
										-	Logged by:	ADJT
											Figure:	

ស	TA	rs	Speci and	alist Engin Environme	eering ental C	g, Materia Consultar	BOR (Perc	EHOLE ussive)	RECORD	Boreł Numk	nole ber:
Site: Horn	isey To	wn Ha	all				Location: Hornsey			BH3	
Clier	nt:						Ground Lo	evel:	Date:	Job No:	
Capi	ta Sym	onds	i				GL not me	easured	11 Jun 09	240362	
GRO	UND W	ATER		SAMPLES	/TEST	S		STRATA R	ECORD	Sheet 2	2 of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description			
		11 12 13 14 15 16 17 18	11.00 D 55 12.50 D 49 15.50 D 50 18.50 D 51	$S = \sum_{\substack{N=35 \\ [12,0](7,8,10,10)}} S = \sum_{\substack{N=37 \\ [10,0](9,8,9,11)}} S = \sum_{\substack{N=39 \\ [13,0](8,10,9,12)}} S$		14		Stiff becoming fissured dark	g very stiff below 15.50m, c grey silty CLAY. (LONDON	closely i CLAY)	
		-		-	-		 	Continued n	ext sheet		
Rem Boreh	arks an ole drilleo	d in 150	er Observat mm tools. Cas	t ions ed to 1.50m. N	lo water	added. No	installation. No g	roundwater encou	intered.	Scale:	1:50
										Logged by:	ADJT
										Figure:	

Site: Location: BH3 Hornsey Town Hall Hornsey Job No: Capita Symonds SAMPLESTESTS STRATA RECORD Sheet 3 of 3 Strike Well Optim Description Sheet 3 of 3 22 Image: Sheet 3 of 3 Strike Well Optim Sheet 3 of 3 23 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 24 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 23 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 24 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 25 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 24 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 25 Image: Sheet 3 of 3 Strike Well Image: Sheet 3 of 3 26 Image: Sheet 3 of 3 Image: Sheet 3 of 3 Image: Sheet 3 of 3 27	S	FA	rs	Speci and	alist Engin Environme	eering ental C	g, Materials Consultants	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	nole ber:
Client: Ground Level: Date: Job No: Capita Symonds GL not measured 11 Jun 09 24032 Strike Wei Papit Depth Type SPT N: Depth Type Strike Key Description Sheet 3 of 3 Strike Wei Papit Type SPT N: Depth Type SPT N: Depth Type SPT N: Series Strike Type Strike Type Strike Type Strike Type Series Strike Type	Site: Horn	sey To	wn Ha	all				Location: Hornsey			BH3	
Capital Symonds GL not measured 11 Jun 09 240362 GROUND WATER SAMPLESTESTS STRATA RECORD Sheet 3 of 3 Strike Weil Optimity SPT N Month Month Second Second <t< td=""><td>Clien</td><td>t:</td><td></td><td></td><td></td><td></td><td></td><td>Ground L</td><td>evel:</td><td>Date:</td><td>Job No:</td><td></td></t<>	Clien	t:						Ground L	evel:	Date:	Job No:	
GROUND WATER SAMPLES/TESTS STRATA RECORD Sheet 3 of 3 Sinke Wein Deptin Depinin Depinin Dept	Capit	a Sym	onds					GL not m	easured	11 Jun 09	240362	
Strike Weil Depth Depth/Type SPT # 0 UBlows Depth/Type Certail Key Description I <td>GRO</td> <td>JND W</td> <td>ATER</td> <td></td> <td>SAMPLES</td> <td>S/TEST</td> <td>s</td> <td></td> <td>STRATA R</td> <td>ECORD</td> <td>Sheet 3</td> <td>s of 3</td>	GRO	JND W	ATER		SAMPLES	S/TEST	s		STRATA R	ECORD	Sheet 3	s of 3
Remarks and Water Observations 25.00 Image of 150m. No water added. No installation. No groundwater encountered. End of Borehole at 25.00 m	Strike	Well	Depth	Depth/Type	SPT 'N'	Depth		Key	Description			
Figure:	Rema Boreho	arks ar	21 22 23 24 25 26 27 28 29 d mate	24.50 D 52 er Observa mm tools. Cas	S S S 	25.00	added. No in	x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x <td>End of Borel</td> <td>hole at 25.00 m</td> <td>Scale:</td> <td>1:50</td>	End of Borel	hole at 25.00 m	Scale:	1:50
Figure:											Logged by:	ADJT
											Figure:	

ភា	A	rs	Speci and	alist Engir Environme	neering ental C	g, Mate Sonsult	rials ants	BOR (Perc	EHOLE ussive)	RECORD	Boreh Numb	nole ber:
Site: Horns	sey To	own Ha	all					Location: Hornsey			BH4	A
Clien	t:							Ground L	evel:	Date:	Job No:	
Capit	a Sym	onds						GL not m	easured	9 Jun 09	240362	
GRO	JND W	ATER		SAMPLES	S/TEST	s			STRATA RE	ECORD	Sheet 1	of 3
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
					0.06 -		0.06	XXXX	MADE GROU	ND: Concrete paving slab.		
		1 2 3 4 5 6 7 8 9	0.90 D 56 4.00 D 63 5.00 D 57 7.00 D 58 8.00 D 59	$S = \sum_{\substack{N=2 \\ [1,0](0,1,0,1)}} S = \sum_{\substack{N=20 \\ [6,0](4,5,5,6)}} S = \sum_{\substack{N=23 \\ [6,0](4,5,7,7)}} S = \sum_{\substack{N=21 \\ [7,0](5,5,5,6)}} S = \sum_{\substack{N=21 \\ [7,0](5,5,5,6)}}$	0.70		2.60		MADE GROU GRAVEL. Sar coarse flint, bi cobbles of any MADE GROU Gravel is fine flint. (REWOR	ND: Dark brown/brown cla dis fine to coarse. Gravel rick and concrete. Abundar gular red/yellow brick and c ND: Brown slightly gravelly to coarse subangular to su KED LONDON CLAY)	vey sandy is fine to it concrete. r silty CLAY. brounded	
									Continued ne	ext sheet		
Rema Boreho	arks an	nd Wat d in 150	er Observat mm tools. Cas	tions ed to 3.00m. N	No watei	r added. N	lo ins	stallation. No g	roundwater encou	ntered.	Scale:	1:50
											Logged by:	ADJT
											Figure:	

ပ်	FA	I S	Speci and	alist Engir Environme	neerin ental C	g, Materia Consultar	BOR (Perc	BOREHOLE RECORD (Percussive)						
Site: Horn	isey To	wn Ha	all				Location: Hornsey	Location: Hornsey						
Clien	nt:						Ground Lo	evel:	Date:	Job No:				
Capi	ta Sym	onds					GL not me	measured 9 Jun 09 240362						
GRO	UND W	ATER		SAMPLES	S/TEST	s		STRATA RECORD Sheet 2 of 3						
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)	Key	Description						
		11 12 13 14 15 16 17 18	11.00 D 60	$S = \sum_{\substack{N=29 \\ [8,0](6,7,7,9)}} S = \sum_{\substack{N=31 \\ [11,0](7,7,8,9)}} S = \sum_{\substack{N=37 \\ [13,0](8,8,9,12)}} S = \sum_{N=37 \\ [$		13		Stiff closely fis (LONDON CL	ssured dark grey silty CLA AY)	Υ.				
Rem	arks an	d Wat	er Observa	tions	-		XX	Continued n	ext sheet	Scale	4.50			
Boreh	ole drilled	d in 150	mm tools. Cas	ed to 3.00m. I	No water	r added. No	installation. No g	roundwater encou	intered.		1:50			
									F		ADJT			
										Figure:				

Site: Horn	Sey To	IS own Ha	Speci and	alist Engin Environme	eering ental C	g, Materia Consultar	BORI (Perce Location: Hornsey	Boreh Numb BH4/	nole ber: A			
Clien	t:						Ground Le	evel:	Job No:			
Capi	ta Sym	onds	1					GL not me	easured	9 Jun 09	240362	
GROUND WATER SAMPLES/TESTS									STRATA RE	ECORD	Sheet 3	of 3
Strike	Well	Depth (m)	Depth/Type	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key Description				
Rema	arks ar ole drille	21 22 23 24 25 26 27 28 29 0 Wate	er Observar nm tools. Cas	S	25.00	r added. No	inst		End of Boreh	ntered.	Scale:	1:50
Boreh	ole drille	a in 150r	nm tools. Case	ea to 3.00m. N	o water	added. No	Inst	allation. No gr	oundwater encou	nterea.	Logged by:	
										ŀ		ADJT
											rigure:	

STATS Specialist Engineering, Materials and Environmental Consultants								TRIA	LF	Trial I Numb	Trial Pit Number:		
Site: Horns	wn H	all				Location Hornsey	n:	CORE	E1				
Clie						Ground	Leve	Job No	.:				
Capit	a Sym	onds					GL not me	easur	ed	-	240362		
GROU	ATER	2	SAMPLE	S/TES	TS		ST	RATA RE	ECORD	Sheet 1	of 1		
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Кеу	Desc	ription			
		-			0.04	(11/(02)	0.04	XXXX	MA	DE GROUN	D: Tarmacadem Hardstandi	ng.	
		-			0.16		0.12	XXXX		D: Concrete with no reinford	ement.	ΔΥ	
					- 0.40		0.24		Gra	coarse angular to subangul	lar brick and		
		-			_				Ēn	d of Trial	Pit at 0.40 m		
		-			-								
		-			-								
					_								
		-			_								
					_								
		-			_								
					_								
		_			_								
					-								
		-2			-								
		-			-								
					_								
		-			-								
					_								
		-			_								
		-			-								
		-3			_								
		-			_								
		_			_								
		-			F								
		L			L								
		F			-								
		-			F								
		4			_								
		F			L								
					-								
		F			L								
		F			L								
		-			-								
		_			_							1	
Rem	arks	and	Water Ol	bservatior	IS					Key	for Insitu tests	Scale:	1:25
											HV-Hand Vane (kN/m2)	Logged by:	ADJT
										PP-Pocke MP-M	et Penotometer (kN/m2) ackintosh Probe (N150)	Figure:	

STATS Specialist Engineering, Materials and Environmental Consultants								TRIA	LF	Trial Pit Number:				
Site: Horns	зеу То	wn H	all				Location Hornsey	n:	CORE2					
Clier	nt:						Ground	Leve	Job No.:					
Capit	a Sym	onds						GL not me	easur	240362				
GROU	ND W	ATER		SAMPLE	S/TES	TS		ST	RATA RE	ECORD	Sheet 1 of 1			
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Кеу	Desc	iption				
Strike	-1 -1 -2 -3 -4									TIPTION DE GROUN DE GROUN DE GROUN avel is fine to obles of angu- own silty CLA Trial	D: Concrete with two layers D: Lean mix concrete. D: Brown sandy GRAVEL. S coarse flint, brick and conc lar red/yellow brick and con Y. (LONDON CLAY) Pit at 0.45 m	of 4mm reinforcement.		
					_									
Rom	arke	and '	Water O	hservation						Kar	for Incitu tooto	Scale:		
	ai 113 (anu			13					ney		1:25		
										PP-Pock	нv-напа vane (kN/m2) et Penotometer (kN/m2)			
										MP-M	ackintosh Probe (N150)	Figure:		
S	TA	<u>s</u>	1	Specialist and Envi	Enginee	ering, Mate	erials Itants	TRIA	LP	IT R	ECORD	Trial I Numb	Pit per:	
----------------	-----------	-----------	------------	------------------------	--	-------------	--------------------------	---------------------	---	---	---	--	---	
Site: Horns	sey To	wn H	all					Location Hornsey	n:			CBR	1	
Clier	nt:							Ground	Leve	l:	Dates:	Job No	.:	
Capit	a Sym	onds						GL not me	easure	ed	-	240362		
GROU	ND W	ATER		SAMPLE	S/TES	TS			STR	ATA RE	ECORD	Sheet 1	of 1	
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Key	Descri	ption				
		(m) 	(m)		(m) 0.15 0.33 0.44 - 0.74 - 1.00 - - - - - - - - - - - - -	(mAOD)	0.15 0.18 0.11 0.30 0.26		MAD MAD coar clink brick MAD coar brick Dark aron Enc	DE GROUN DE GROUN DE GROUN Se. Gravel i cand concrete cand concrete cand concrete grey/black na. (ALLUV J of Trial	D: Tarmacadem Hardstandi D: Concrete. D: Black/dark brown gravell s fine to coarse angular to s e and brick. Some cobbles of D: Brown clayey gravelly S/ s fine to coarse angular to s ete. Some cobbles of angula clayey SILT. Roots and roo IUM) Pit at 1.00 m	ing. y SAND. Sand is subangular of angular red AND. Sand is fine subangular flint, ar red brick. 	fine to to	
Rem	arks	 and `	Water O	bservatior	IS		L			Kev	for Insitu tests	Scale:	4.05	
										ney	HV-Hand Vane (kN/m2)	Logged by:	1:25 AD.IT	
										PP-Pock	et Penotometer (kN/m2)	Figure	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
										MP-M	ackintosh Probe (N150)	rigure:		

S1	TA	rs		Specialist	Enginee	rina Mət	ariala	TRIA	LF	PIT R	ECORD	Trial P	Pit
				and Envi	ronment	al Consul	tants					ממשמו	er:
Site: Horns	sey To	wn H	all					Location Hornsey	n:			CBR2	2
Clier	nt:							Ground	Leve	el:	Dates:	Job No.	:
Capit	a Sym	onds						GL not m	easur	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	TS			ST	RATA RE	ECORD	Sheet 1 o	of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Key	Desc	ription			
		_	(,		- 0.09	(0.09	XXXX	MA	DE GROUN	D: Tarmacadem Hardstandi	ng.	
		-			0.16		0.07 0.10		MA to c	DE GROUN	D: Purple/grey slightly sandy el is medium to coarse angu	GRAVEL. Sand i lar limestone with	is fine
		-			- 0.42		0.16		MA	DE GROUN	D: Concrete.		/
		_			-		0.10		MA	DE GROUN	D: Black gravelly SAND. San coarse angular to subangul	nd is fine to coarse ar clinker and	э.
		_			_								/
		-			- 0.81		0.39		is fi sub	ine to coarse pangular flint	. Gravel is fine to coarse and brick and clinker.	gular to	. Sanu
		-1			- 1.00		0.19		MA	DE GROUN	D: Brown slightly sandy sligh coarse. Gravel is fine to coar and brick	ntly gravelly CLAY se angular to	. ;
		-			-				Ē	d of Trial	Pit at 1.00 m		⁄
		_			-								
		-			_								
		_			-								
		-2			-								
		_			-								
		-			-								
		_			_								
		_			-								
		-			-								
		_			-								
		-3			-								
		_			_								
		-			-								
		_			-								
		_			_								
		-			-								
		-4											
		_			_								
		_			-								
		_			_								
		-			-								
		_			-								
Rem	arks	and \	Water Ol	bservation	S					Kev	for Insitu tests	Scale:	1.05
		-								,	HV-Hand Vane (kN/m2)	Logged by:	ADJT
										PP-Pock	et Penotometer (kN/m2)	Figure:	
										IVIP-M	ackintosh Probě (N150)		

S	FA	<u>rs</u>)	Specialist and Envi	Enginee	ering, Mate al Consul	erials Itants	TRIA	LF	PIT R	ECORD	Trial F Numb	Pit er:
Site: Horns	sey To	wn H	all					Location Hornsey	n:			CBR	3
Clier	nt:							Ground	Leve	el:	Dates:	Job No.	.:
Capit	a Sym	onds						GL not me	easur	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	TS			ST	RATA RE	ECORD	Sheet 1	of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Кеу	Desc	ription			
		_			- 0.10		0 10		MA	DE GROUN	D: Tarmacadem Hardstandi	ng.	
		_			-				MA Gra	DE GROUN	D: Black gravelly SAND. Sa coarse angular to subangul	nd is fine to coars ar clinker and	e.
		_			0.33		0.23	XXXX	flin	t.			
		_			- 0.40		0.07				D: Yellow SAND. Sand is fir	e to coarse.	
		-			-				Gra	avel is fine to	coarse angular to subangul	ar clinker and	
		_			_ 0.68		0.28	<u>××××</u> ×	Da	rk grey/black	clayey SILT. Roots and roo	tlets. Organic	
		-			-			<u> </u>	aro	ma. (ALLUV	IUM)		
		-1			- 1.00		0.32	(XXXX	En	d of Trial	Pit at 1.00 m		
		_			F								
		-			-								
		_											
		_			-								
		-			-								
		_											
		-2			-								
					E								
		-			_								
		-			-								
		_											
		-			-								
		_			-								
		-3			–								
		-			-								
		_											
		-			-								
		L			F								
		F			Ļ								
		-			F								
		-1			<u> </u>								
		-			F								
		F			F								
		_			F								
		_			-								
					F								
		_			-								
		_			F								
Rem	arks	and	Water O	bservatior	IS	1		•		Key	for Insitu tests	Scale:	1:25
										-	HV-Hand Vane (kN/m2)	Logged by:	ADJT
										PP-Pock	et Penotometer (kN/m2)	Figure:	
										MP-M	ackintosn Probe (N150)	-	

S1	TA	<u>rs</u>		Specialist and Envi	Enginee	ering, Mate al Consul	erials Itants	TRIA	LF	PIT R	ECORD	Trial F Numb	Pit er:
Site: Horns	sey То	wn H	all					Location Hornsey	n:			CBR	4
Clier	nt:							Ground	Leve	el:	Dates:	Job No.	:
Capit	a Sym	onds						GL not me	easur	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	TS			ST	RATA RE	ECORD	Sheet 1 of	of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Кеу	Desc	ription			
		-	(11)		-				MA CL/ cob	DE GROUN AY. Gravel is obles of angu	D: Grass over dark brown sli fine to medium subangular lar red brick.	ghtly gravelly silty red brick. Rare	/
					- 0.34 		0.34		Bro Ēn	wn with som	e red/orange mottling silty C	LAY. (LONDON (CLAY)
		-			-								
- Dama	orke		Motor O							17	for hereit to the	Sealer	
Rem	arks	and	water O	uservation	15					Кеу	tor Insitu tests	Scale:	1:25
										PP-Pock	HV-Hand Vane (kN/m2) et Penotometer (kN/m2)	Logged by:	ADJT
										MP-M	ackintosh Probe (N150)	Figure:	

S ite:		<u>s</u>		Specialist and Envi	Enginee ronment	ring, Mate al Consul	erials tants	TRIA	L F	PIT R	ECORD	Trial F Numb	Pit ber:
Horns	sey То	wn H	all					Hornsey	1.			CBR	5
Clier	nt:							Ground	Leve	el:	Dates:	Job No.	.:
Capit	a Sym	onds	1					GL not me	easui	red	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	ГS			ST	RATA RE	ECORD	Sheet 1	of 1
Strike	Well	Depth	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Кеу	Desc	ription			
		(m) 	(m)		(m) - (m)	(mAOD)	0.30		MA Gra bitt Bro	ADE GROUN avel is fine to umen and bri own silty CLA	D: Black sandy GRAVEL. Sc coarse angular to subangul ck. Some cobbles of angular Y. (LONDON CLAY) Pit at 1.00 m	and is fine to coar ar clinker, r red brick.	'se.
		-			_								
		-			-								
		_			-								
		-			-								
		_											
Rem	arks	and	Water OI	oservation	IS					Kov	for Insitu toete	Scale:	
										Rey		Logged by:	1:25
										PP-Pock	et Penotometer (kN/m2)	Eiguro:	ADJI
										MP-M	ackintosh Probe (N150)	rigure:	

Site:		<u>s</u>	•	Specialist and Envi	Enginee ronment	ering, Mate al Consul	erials tants	TRIA	L F	PIT R	ECORD	Trial F Numb	Pit per:
Horns	зеу То	wn H	all					Hornsey				CBR	6
Clier	nt:							Ground	Leve	el:	Dates:	Job No	.:
Capit	a Sym	onds						GL not me	easur	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	TS			STI	RATA RE	ECORD	Sheet 1	of 1
Strike	Well	Depth	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Кеу	Desci	ription			
		-	()		-	(MA san sub	DE GROUN dy CLAY. Sa angular red	D: Grass over dark brown sl and is fine to coarse. Gravel brick.	ightly gravelly slig is fine to coarse	ghtly
		-			- 0.30 - - 0.48		0.30 0.18		MA Sar red	DE GROUN nd is fine to c brick.	D: Brown slightly gravelly sli coarse. Gravel is fine to coar	ghtly sandy CLAN se subangular	Y.
		- - -			-				Bro	wn silty CLA	Y. (LONDON CLAY)		
					- 1.00		0.52		En	d of Trial	Pit at 1.00 m		
Rem	arks	and	Water O	bservation	l IS					Κον	for Insitu tests	Scale:	4.65
										Ney	H\/-Hand \/ane (kN/m2)	Logged by:	1:25 AD IT
										PP-Pock	et Penotometer (kN/m2)	Figure	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
										MP-M	ackintosh Probe (N150)	riguie.	

Site:		<u>s</u>		Specialist and Envi	Enginee ronment	ering, Mate al Consul	erials tants	TRIA Location	L F	PIT R	ECORD	Trial I Numb	Pit ber:
Horns	sey To	wn H	all					Hornsey				CBR	7
Clier	nt:							Ground	Leve	el:	Dates:	Job No	.:
Capit	a Sym	onds	1					GL not me	easu	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	rs			ST	RATA RE	ECORD	Sheet 1	of 1
Strike	Well	Depth (m)	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Кеу	Desc	ription			
		-			0.04		0.04	XXXX	MA		D: Tarmacadem Hardstandi	ng.	
		_			0.22		0.18		MAGra	DE GROUNI DE GROUNI avel is fine to	D: Brown gravelly SAND. Sa coarse subangular flint.	and is fine to coa	rse.
		_			- 0.49		0.27	<u> </u>	Bro	own silty CLA	Y. (LONDON CLAY)		
		_			-			××					
		-1			- 1.00		0.51	^	Ēr	nd of Trial I	Pit at 1.00 m		
		_			-								
		_			_								
		_			-								
		-2											
		_			-								
		_			-								
		_			-								
		-3											
		_			_								
		_			-								
		_			-								
		-4											
		_			-								
		_			_								
		_			-								
Rem	arks	and '	Water Ol	bservation	IS					Key	for Insitu tests	Scale:	1.25
										2	HV-Hand Vane (kN/m2)	Logged by:	ADJT
										PP-Pocke MP-M	et Penotometer (kN/m2) ackintosh Probe (N150)	Figure:	

S		<u>s</u>		Specialist and Envi	Enginee ronment	ering, Mate al Consul	erials tants	TRIA	LF	PIT R	ECORD	Trial Pit Number:
Site: Horns	зеу То	wn H	all					Location Hornsey	n:			SA1
Clier	nt:							Ground	Leve	el:	Dates:	Job No.:
Capit	a Sym	onds						GL not me	easur	ed	-	240362
GROU	ND W	ATER		SAMPLE	S/TES	TS			ST	RATA RE	ECORD	Sheet 1 of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Кеу	Desc	ription		
		-			-	(0.24		MA CL cot	DE GROUN AY. Gravel is obles of angu	D: Grass over dark brown slig fine to medium subangular i lar red brick.	ghtly gravelly silty ed brick. Rare
							2.66		Bro	own with som	e red/orange mottling silty Cl	AY. (LONDON CLAY)
Rem	arks	and \	Water Ol	bservation	S		L			Kev	for Insitu tests	Scale:
										iveà	H\/-Hand \/ane (k\\/m2)	1:25 Logged bv: די סא
										PP-Pock	et Penotometer (kN/m2)	Figure:
										MP-M	ackintosh Probe (N150)	i iyure.

S	FA	S		Specialist and Envi	Enginee ronment	ring, Mate al Consul	erials tants	TRIA		PIT R	ECORD	Trial I Numb	Pit per:
Horns	sey To	wn H	all					Hornsey	1.			SA2	
Clier	nt:							Ground	Leve	el:	Dates:	Job No	.:
Capit	a Sym	onds						GL not me	easur	ed	-	240362	
GROU	ND W	ATER		SAMPLE	S/TES	ΓS			ST	RATA RE	ECORD	Sheet 1	of 1
Strike	Well	Depth (m)	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Кеу	Desc	ription			
		(m) 	(m)		(m) - - - - - - - - - - - - -	(mAOD)	2.58		MA Gra bitu Bro	DE GROUN avel is fine to imen and bri- wn silty CLA	D: Black sandy GRAVEL. Sa coarse angular to subangul ck. Y. (LONDON CLAY)	and is fine to coa ar clinker,	rse.
Rom	arke	 and \	Wator O	hservation					[[Kar	for Incity tooto	Scale:	
Kem	aiksi	anu	water U	USEI VALION	15					кеу	TOT INSITU TESTS		1:25
										PP-Pock	HV-Hand Vane (kN/m2) et Penotometer (kN/m2)	Logged by:	ADJT
										MP-M	lackintosh Probe (N150)	Figure:	

S 7		S)	Specialist and Envi	Enginee ronmen	ering, Mat tal Consu	erials Itants	TRIA	L PIT R	ECORD	Trial Pit Number:
Horns	: sey To	wn H	all					Hornsey	n: 		TP1
Clier	nt:							Ground	Level:	Dates:	Job No.:
Capit	a Sym	onds						GL not me	easured	5 Jun 09	240362
GROU	JND W	ATER	,	SAMPLE	S/TES	TS		ļ	STRATA R	ECORD	Sheet 1 of 1
Strike	Well	Depth (m)	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Кеу	Description		
		-	(,		0.02	,,	0.02 0.07		MADE GROUN	ND: Tarmacadem Hardstandir	ng.
		F			- 0.20		0.11	KXXXX	MADE GROUN	1D: Red lean mix concrete wit	th reinforcement.
		L			-				MADE GROUN	ND: Red/brown sandy GRAVE	EL. Sand is fine to coarse.
		F		HV 0.50 73.3	0.43		0.23	××	Gravel is fine to and concrete.	o coarse angular to subangula Some cobb <u>les of angular red</u>	ar flint, brick brick and concrete.
					_			<u> </u>	Firm to stiff bro	wn/light brown silty CLAY. Fir	ne orange
		F		HV 0.75 89.3	-				@ 0.6	30m Fine orange claystone gr	avel.
		-			-			$ \begin{array}{c} \widehat{} \\ -\underline{x} \\ -x$	@ 0.8	30m Increase in mottling, and	selenite content.
		-1			_						
		F			F			xx			
		F			-			xX			
		L			_			<u></u>			
		F			F						
		F			F			$\begin{array}{c} \times \times - \\ \times - \end{array}$			
								××			
		-2			F			<u></u>			
					F			<u></u>			
		-			-						
		Ę			-			$\begin{array}{c} \times - & - \times - \\ - & \times - & - \end{array}$			
		F			-			××			
		L			-			<u> </u>			
		F			F			<u></u> X		D. L. ticz iz blue mettlin	
		ł			-			<u>×</u> ×		30m Reduction in plue motuing	g.
		-3			_						
		F			F						
		F			-			××			
		F			F			<u></u>			
		_						$\overline{-x}$			
		F			-			<u>× </u>			
		F			-			×			
		-4			4.00		3.57	××			
		- ·			-				End of Iriai	Pit at 4.00 m	
		F			F						
		F			F						
		$\left \right $			-						
		L			F						
		F			F						
		F			F						
Rem	arks	and ^r	Water O	bservatior	າຣ		4	<u> </u>	Kev	for Insitu tests	Scale: 1:25
Window	w sampli	ing follo	ow on to trial	pit excavation.	No grour	ndwater e	ncour	ntered.			
									PP-Pocl	HV-Hand Vane (kN/m2) ket Penotometer (kN/m2)	Logged by. ADJI
									MP-N	Aackintosh Probe (N150)	Figure:

5	TA T	<u>s</u>		Specialist and Envi	Enginee	ering, Mate	erials Itants	TRIA	LP	IT R	ECORD	Trial Pit Number:
Site: Horns	sey То	wn H	all					Location Hornsey	n:			TP1A
Clier	nt:							Ground	Leve	l:	Dates:	Job No.:
Capit	a Sym	onds						GL not m	easure	ed	9 Jun 09	240362
GROU	ND W	ATER		SAMPLE	S/TES	TS			STF	RATA RE	ECORD	Sheet 1 of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Key	Descr	iption		
		_ (11)	(11)		0.04	(IIIAOD)	0.04 0.03	XXXX	MAI	DE GROUN	D: Tarmacadem Hardstand	ing.
		_			0.07		0.14			DE GROUN	D: Red lean mix concrete w	ith reinforcement.
		-			-					DE GROUN	D: Grey lean mix concrete	vith reinforcement.
		-			0.45		0.24		MAI Grav	VE GROUN	D: Red/brown sandy GRAV coarse angular to subangu	EL. Sand is fine to coarse lar flint, brick
		-			-				Brov	vn/light brov	wn silty CLAY. Fine orange	claystone
		-			-			<u> </u>	thro	ughout. (LC	NDON CLAY)	
		-			-			××				
		-1						××				
		_			_							
		_			- 1.30		0.85	<u>×_</u>		d of Trial	Bit at 1 20 m	
		-			-					o or rnar	Pilal 1.30 m	
		_			_							
		-			-							
		-			-							
		-2			_							
		-			-							
		-			-							
		_			-							
		-			-							
		-			-							
		_			-							
		-			-							
		-3										
		_			_							
		-			-							
		-			-							
		-			_							
		F			-							
		-4			-							
		L			_							
		F			-							
		-			_							
		-			_							
		F			-							
		-			-							
		-			_							
Rem	arks	and	Water Ol	bservatior	S	1	1			Kev	for Insitu tests	Scale: 1.05
No follo	ow on wi	ndow s	ampling carr	ied out. No grou	Indwate	rencounte	ered.			,		
										PP-Pock	et Penotometer (kN/m2)	-ogged by. ADJ
										MP-M	lackintosh Probe (N150)	Figure:

51	FA T	S		Specialist and Envi	Enginee	ering, Mate	erials Itants	TRIA	L PIT R	ECORD	Trial Pit Number:
Site: Horns	: sey To	wn H	all					Location Hornsey	ו:		TP2
Clier	nt:							Ground	Level:	Dates:	Job No.:
Capit	a Sym	onds						GL not me	easured	5 Jun 09	240362
GROU		ATER		SAMPLE	S/TES	TS			STRATA RI	ECORD	Sheet 1 of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Кеу	Description		
		-			- 0.09		0.09		MADE GROUN	D: Tarmacadem Hardstandi	ng.
		-			-				MADE GROUN	ID: Red lean mix concrete w	ith reinforcement.
		-		HV 0.50 42.0	- 0.29 - - 0.49		0.20	XXX	MADE GROUN Gravel is fine to and concrete. R	ID: Red/brown sandy GRAV coarse angular to subangu Rare cobbles of angular red I	EL. Sand is fine to coarse. lar flint, brick prick and concrete.
		-		110 0.000 12.0	-			××	Firm brown/ligh	t brown clayey SILT. (LOND	ON CLAY)
		_		HV 0.75 46.7	_			××			
		-			-			××			
		-1						<u> </u>	@ 1.0	0m Blue/grey/brown mottled	
		-			-			<u> </u>			
		-			-			<u> </u>			
		-			-			××	@ 1.4	Um Claystone band or cobbi	e.
		-			-						
		_						<u> </u>	@ 1.8	0m Abundant fine selenite g	ravel.
		-2			_			<u>_</u>			
		_			_			<u>×</u> ×			
		-			-						
		_			-			<u>^×</u> ×			
		-			-			<u>×— </u>	@ 2.5 mottling.	0m Fine decomposing rootle	ets with reduced
		_			-			××			
		-			-			×			
		-3			-			××			
		-			-			××			
		_			F			<u>x_^x</u>			
		_						××			
		-			-			<u> </u>			
		_			-			<u> </u>			
		-4									
		-			-			× <u>×</u> _×			
		-			-			××			
		_			-			<u></u>			
		F			-				@ 4.6	0m Blue staining along histre	pica root paths.
		_			F			<u> </u>			
		-			_			<u>^×</u> ×			
Rem	arks	and	Water O	bservatior	IS		_		End of Trial Key	Pit at 5.00 m for Insitu tests	Scale: 1:25
Window	w sampli	ng follo	ow on to trial	pit excavation.	No grour	ndwater ei	ncour	ntered.		HV-Hand Vane (kN/m2)	Logged by: ADJT
									PP-Pock MP-M	et Penotometer (kN/m2) lackintosh Probe (N150)	Figure:

S 1		<u>rs</u>	1	Specialist and Envi	Enginee	ering, Mate tal Consul	erials Itants	TRIA	LF	יוד R	RECORD	Trial Pit Number:					
Site: Horns	зеу То	wn H	all					Location Hornsey	n:			TP3)				
Clier	nt:							Ground	Leve	əl:	Dates:	Job No	.:				
Capit	a Sym	onds						GL not me	easur	ed	10 Jun 09	240362					
GROU	ND W	ATER	<u></u>	SAMPLE	S/TES	TS		T	STRATA RECORD Sheet 1 of 1								
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Кеу	Desc	ription							
		- (11)	(m)		(m) -	(MAOD)	$\left \right $		MA		ND: Concrete.						
	- 0.18 0.11 - 0.18 0.11 - 0.18 0.11 - 0.18 0.11 - 0.18 0.11					0.18		MA coa cor	MADE GROUND: Brown/black sandy GRAVEL. Sand is fine to coarse. Gravel is fine to coarse angular to subangular brick, concrete, bitumen, clinker and flint.								
		- - - - - 3 - - - -			-												
		- - - - - - - - - - - - - - - - - - -			-												
Rem	arks	and	Water Ol	bservatior	15	<u> </u>	<u> </u>	I	<u> </u>	Kev	for Insitu tests	Scale:					
Window	v sampl	ing follo	ow not carried	d out due to con	icrete ob	structions	. No (groundwater		ney.		Logged by:	1:25				
encoun	itered.									PP-Poc	HV-Hand Vane (к№/m∠) (ket Penotometer (kN/m2)	LUyyeu by.	ADJT				
										MP-N	Mackintosh Probe (N150)	Figure:					

5	TA T	<u>S</u>		Specialist and Envi	Enginee	ering, Mate tal Consul	erials Itants	TRIA	L PIT R	ECORD	Trial Pit Number:							
Site: Horns	sey To	wn H	all					Location Hornsey	ו:		TP4							
Clier	nt:							Ground	Level:	Dates:	Job No.:							
Capit	a Sym	onds						GL not me	easured	ured 8 Jun 09 240362								
GROU	ND W	ATER		SAMPLE	S/TES	TS			STRATA R	TRATA RECORD Sheet 1 o								
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Кеу	Description									
		-	(,		- 0.12		0.12		MADE GROUN	ND: Red concrete paving slab								
		-		11/ 0.50 52.0	-		0.37		MADE GROUN coarse. Gravel and brick.	ND: Brown/grey gravelly SANI is fine coarse angular to suba	D. Sand is fine to angular concrete							
		_		HV 0.50 52.0	- 0.49		0.10	KXXX	MADE GROUN	ND: Light brown silty CLAY. (F	REWORKED LONDON							
		- - 1		HV 1.00 58.7	-		0.51		MADE GROUI flint gravel. Org rootlets. (REW	ND: Light grey/blue silty CLAY ganic rich. Occasional to rare ORKED LONDON CLAY)	. Rare fine angular fine roots and							
		-			-		0.57	×× × ×× ××	Firm becoming silty CLAY. (LC	stiff below 2.00m, closely fiss ONDON CLAY)	sured light brown							
		-		PP 1.50 108 HV 78.7	-													
		-2 - - -		PP 2.00 125					@ 2.0 @ 2.2 historic	@ 2.00m Fine selenite and claystone gravel. @ 2.20m Increase in light blue/grey mottling along historic root paths.								
		3		PP 3.00 158	- - - 3.00 -		1.90	×× × ×× ××	End of Trial	Pit at 3.00 m								
		- - - - - - - - - -			- - - - -													
		- - - -			- - - -													
Rem	arks	and \	Water O	bservation	ຼ າຣ	1	1		Key	for Insitu tests	Scale:							
Trial pit	t extende	ed by n	nechanical e	xcavator. No gr	oundwat	er encoun	itered	l.			1:25 Logged by: דו חא							
									PP-Poc MP-N	ket Penotometer (kN/m2) Mackintosh Probe (N150)	Figure:							

51	STATS Specialist Engineering, Mate and Environmental Consult							TRIA	LP	PIT R	ECORD	Trial Pit Number:					
Site: Horns	sey То	wn Ha	all					Location Hornsey	n:			TP5					
Clier	nt:							Ground	Leve	el:	Dates:	Job No.:					
Capit	a Sym	onds						GL not me	easur	sured 8 Jun 09 240362							
GROU	ND W	ATER		SAMPLE	S/TES	ГS			ST	RATA RE	ECORD	Sheet 1 of 2	1				
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth	Level		Кеу	Descr	iption							
		(m) - - - - - - - - - - - - - - - - - - -	(m)	HV 1.40 72.0	(m) - - - - - - - - - - - - - - - - - - -	(mAOD)	0.51		MA MA	DE GROUN DE GROUN n to stiff brow NDON CLA @ 1.40	E GROUND: Concrete.						
		-22		HV 1.90 84.0	- 2.00 - 2.00 		0.60		En	d of Trial	Pit at 2.00 m						
		-			-												
Rem	arks	and \	Water O	bservatior	IS					Kev	for Insitu tests	Scale:	25				
Ground	dwater s	eepage	noted at bas	se of made grou	ınd. Trial	pit exten	ded b	y mechanical			HV-Hand Vane (kN/m2)	Logged by: Ar	<u>-</u>				
uu								PP-Pocket Penotometer (kN/m2) MP-Mackintosh Probe (N150)									

S 1	STATS Specialist Engineering, Mater and Environmental Consulta						erials Itants	TRIA	LP	IT R	ECORD	Trial Pit Number:
Site: Horns	sey To	wn H	all					Location Hornsey	n:			TP6
Clier	nt:							Ground	Level	l:	Dates:	Job No.:
Capita	a Sym	onds						GL not me	easure	d	8 Jun 09	240362
GROU	ND W	ATER		SAMPLE	S/TES	TS			STR	ATA RE	ECORD	Sheet 1 of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Key	Descri	ption		
		- - -	(11)		-	(IIIAOD)	0.00		MAD	E GROUN	D: Concrete.	
		-		HV 0.50 62.0	- 0.68		0.30		MAD coars clinke	E GROUN se. Gravel i er, bitumen	D: Dark brown/black gravelly s fine to coarse angular to s and flint.	/ SAND. Sand is fine to ubangular brick,
				HV 1.00 70.7	- - - -				Firm rootle	light brown ets. (LOND	/brown silty CLAY. Decomp ON CLAY)	osing roots and
		-			- - - -					@ 1.50 root path	Om Increase in grey mottling s. Fine selenite gravel.	along decomposing
		-		PP 2.00 142	- - - - -							
		-3		PP 3.00 158	- - 3.00 - - - - - -		2.32	×x 	End	l of Trial I	Pit at 3.00 m	
		- 4 - - - -			-							
		-			_							
Kem Window	arks a v samoli	and hand	water O	pit excavation	IS No arour	ndwater er	JCOIIr	ntered		Key	for Insitu tests	Scale: 1:25
	. campi				.s groui						HV-Hand Vane (kN/m2)	Logged by: ADJT
										PP-Pocke MP-M	ei Penotometer (kN/m2) ackintosh Probe (N150)	Figure:

ST	STATS Specialist Engineering, Mate and Environmental Consult						erials Itants	TRIA	LF	PIT R	ECORD	Trial Pit Number:
Site: Horns	sey To	wn Ha	all					Location Hornsey	n:			TP7
Clier	nt:							Ground	Leve	el:	Dates:	Job No.:
Capita	a Sym	onds						GL not me	easur	ed	8 Jun 09	240362
GROU	ND W	ATER		SAMPLE	S/TES	TS			STI	RATA RE	ECORD	Sheet 1 of 1
Strike	Well	Depth	Type/Depth	In-situ Tests	Depth			Key	Desci	ription		
		-	(11)		_ 0.07		0.07	*****	MA	DE GROUN	D: Concrete.	
		-			- 0.21		0.14		MA		D: Lean mix concrete.	pottlod silty CLAX
		-		HV 0.50 68.7	- - - -		0.00		Rar	DE GROUN re fine to coa	D: Brown locally light blue m Irse angular red birck gravel	ottied slity CLAY.
		- 1 -		HV 1.00 82.7	- 0.81 		0.60		Firr Occ roo CL/	n becoming : casional blue tlets paths. A AY)	stiff below 1.50m, light brow /grey staining along decom /bundant angular selenite cr	n silty CLAY. bosing root and ystals. (LONDON
		-		PP 1.50 108	-							
		-2		PP 2.00 125	- - -							
		-		PP 2.50 142	-							
		-3 - - - - - -		PP 3.00 158	- 3.00 - - - - - - - -		2.19		En	d of Trial I	Pit at 3.00 m	
		- 4 -			- 							
		_			- -							
		_			_							
Rem	arke	and \	Nater O	hservation						Kov	for Insitu tosts	Scale:
Window	v sampli	ng follo	w on to trial	pit excavation. I	No grour	ndwater er	ncour	ntered.		кеу		1:25
										PP-Pock	HV-Hand Vane (kN/m2) et Penotometer (kN/m2)	
										MP-M	ackintosh Probe (N150)	Figure:

APPENDIX C

Geotechnical Laboratory Test Records

STATS

STATS Laboratories Tel: +44(0) 1727 833261 Fax: +44(0) 1727 835682 Email: info@stats.co.uk Website: www.stats.co.uk

Porterswood House Porters Wood St Albans Herts AL3 6PQ United Kingdom

Natural Moist	ure Content		
BS 1377 1990			
240362 Hornsey Tov	vn Hall		
Client Details Canit	a Symonds Limited		
1 Dreater Street Helbo			
1 Procter Street, Holdo	rn, London, WCTV 6DVV.		
Order Reference		Order Date	19/06/09
Sample Details			
Sample Type	Small Disturbed		
Sampled by	STATS	Sampling Date	11/06/09
STATS Batch No	9426	Test Date Period	19/06/09 to 22/06/09
Receipt Date	19/06/09		
Madha ala			
Methods	Maiatura Contant :	PS 1277: Port 2 : 1000: Clause '	3.0
Test	Moisture Content .	DS 15/7. Fait 2 . 1990. Clause	5.2
Deviations	- 1		
No soil description rec	luired		
Certification			
Certificate prepared by	11	Certificate reviewed by	
D Griffin	> Gulli	J Bailey	
<u>`</u>		-	48M
Princ	cipal Technician	Ass	ociate Director
Testing By	D Griffin	Certificate Issue Date	28/07/2009

The results given in this certificate relate only to those samples submitted and specimens tested and to any material properly represented by those samples and specimens. Any opinions and interpretations are outside the scope of UKAS accreditation.

STATS

RESULTS

BH/TP NO.	Depth (m)	Moisture Content %
BH1A	0.70	29
BH1A	1.70	32
BH1A	2.80	32
BH1A	3.50	31
BH1A	4.80	29
BH1A	5.50	31
BH1A	8.50	32
BH1A	9.00	29
BH1A	10.50	30
BH1A	12.50	29
BH1A	14.50	28
BH1A	16.50	29
BH1A	17.50	29
BH2	1.40	31
BH2	2.40	29
BH2	3.00	30
BH2	4.40	29
BH2	5.00	32
BH2	5.90	29
BH2	8.90	33
BH2	9.90	31
BH2	10.40	31
BH2	11.90	30
BH2	15.00	29
BH2	17.00	27
BH2	18.00	29
BH2	21.50	21
BH3	3.50	33
BH3	4.80	33
BH3	6.50	27
BH3	9.50	27
BH3	15.50	29
BH3	18.50	28
BH4A	0.90	19
BH4A	5.00	30
BH4A	7.00	33
BH4A	8.00	33
BH4A	11.00	33
BH4A	14.00	28

STATS

STATS Laboratories Tel: +44(0) 1727 833261 Fax: +44(0) 1727 835682 Email: info@stats.co.uk Website: www.stats.co.uk

Porterswood House Porters Wood St Albans Herts AL3 6PQ United Kingdom

M .:	taut and Dlastia	ity Index of Soil	
Moisture Con	tent and Plastic	ity index of Soli	
BS 1377 1990			
240362 Hornsey Tov	vn Hall		
Client Details Capit	a Symonds Limited		
1 Procter Street Holbo	rn London WC1V 6DW.		
Order Reference		Order Date	19/06/09
Sample Details	O		
Sample Type	Small Disturbed	Ocean line Data	11/00/00
Sampled by	STATS	Sampling Date	10/06/09 to 22/06/00
STATS Batch No	9426	Test Date Period	19/00/09 10 22/00/09
Receipt Date	19/06/09		
Mothode			
Wethous	Moisture Content -	3S 1377: Part 2 · 1990: Clause 3	2
Test	Plasticity Index: BS	1377 Part 2 1990 Clauses 4.2.4	- 4.4. 5.2. 5.3 and 5.4
	Plasticity index. BS	1377. Fait 2. 1330. Glauses 4.2,	1.1, 0.2, 0.0 und 0.1
Certification			
Certificate prepared by		Certificate reviewed by	2
	- CM.	I Railov	$() \rho$
D Grimin	V. GM/h	J Dalley	156 1
		C'	
Prin	cipal Technician	Asso	ciate Director
Testing By	D Griffin	Certificate Issue Date	28/07/2009

The results given in this certificate relate only to those samples submitted and specimens tested and to any material properly represented by those samples and specimens. Any opinions and interpretations are outside the scope of UKAS accreditation.

RESULTS

BH/TP	Depth (m)	Moisture		Plasticity Index							
NO.		Content (%)	LL(%)	PL(%)	PI	425 micron					
BH1A	1.90	32	73	29	44	0 N					
BH1A	3.80	31	74	30	44	0 N					
BH1A	6.50	31	76	32	44	0 N					
BH1A	15.00	29	74	30	44	0 N					
BH2	1.50	30	73	31	42	0 N					
BH2	3.50	31	74	31	43	0 N					
BH2	9.00	31	76	35	41	0 N					
BH3	12.50	28	74	31	43	0 N					
BH3	24.50	28	74	30	44	0 N					
BH4A	19.00	27	74	29	45	0 N					

Remarks

N - Natural State

WS - Wet Sieve Preperation

STATS Laboratories Tel: +44(0) 1727 833261 Fax: +44(0) 1727 835682 Email: info@stats.co.uk Website: www.stats.co.uk Porterswood House Porters Wood St Albans Herts AL3 6PQ United Kingdom

Determination of the shear strength in triaxial compression without the measurement of pore pressure

BS 1377 1990

STATS

240362 Hornsey Town Hall

Client Details Capita	Symonds Limited													
1 Procter Street, Holborr	i, London, WC1V 6DW.													
Order Reference		Order Date	19/06/09											
Sample Details														
Sample Type	Undisturbed	1												
Sampled by	STATS	STATS Sampling Date 11/06/09												
STATS Batch No	9426	3426 Test Date Period 22/06/09 to 23/06/09												
Receipt Date	19/06/09	19/06/09												
Methods														
Test The soil description was carried out in accordance with BS 1377:Part 1:1990:Clause 9.1 (Not UKAS Accredited)														
	The test specimen was prepared in accordance with BS 1377:Part 1:1990:Clause 8													
	The triaxial test was car	The triaxial test was carried out in accordance with BS 1377:Part 7:1990:Clause 8												
	Test marked "Not UKAS Accreditation Schedule	Test marked "Not UKAS Accredited" in this certificate are not included in the UKAS Accreditation Schedule for our laboratory.												
Deviations														
Certification														
Certificate prepared by	11	Certificate reviewed by	N.											
D Griffin 🧊	S. Guffi	J Bailey	Phy											
Princi	oal Technician	Asso	ciate Director											
Testing By	D Griffin	Certificate Issue Date	28/07/2009											

The results given in this certificate relate only to those samples submitted and specimens tested and to any material properly represented by those samples and specimens. Any opinions and interpretations are outside the scope of UKAS accreditation.

Job No: 240362 Test date: 22/06/2009 Tested By: D Griffin

Method of field sampling	Light percussion	shell and	auger	boring
--------------------------	------------------	-----------	-------	--------

Borehole nu Depth - m Description Orientation of Sample type Batch Numb Length - mm Diameter - m	mber of specimen e ver nm	BH1A 3.00 Dark yellowish brown thinly Vertical Undisturbed 9426 204.0 102.0	y lamina Mem Mem Load Ring Strain Cell p	brane brane ring r const n rate pressu	bati thic efer ant - %, ure -	y fis ch re kne ence - N/c /min kN/	sure efere ss - r e livisio m2	d cla nce mm on	ау и	vith	G30 0.3 G1 3.5 1.5 60	veir 654 4 638 0	ns of //5	f gre	∘y ar	nd o	CC (cry
Percent Strain 0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.9 1.0 1.2 1.5 1.7 2.0 2.2 2.5 2.9 3.4 3.9 4.4 4.9 5.9 6.9 7.8 8.8 9.8 10.8	Deviator Stress (KN/m2) 0 25 36 45 53 60 68 76 83 95 104 108 115 121 127 139 153 163 163 163 167 168 180 193 191 197 206 198		Deviator Stress - kN/m2	250 200 150 100 50 0						Stra	in -	%					15	
						SI	JMN	ЛАІ	٦Y	OF	R	S	UL	TS				

Natural moisture content - %	31
Bulk density - Mg/m3	1.95
Dry density - Mg/m3	1.49
Cell pressure - kN/m2	60
Max deviator stress - kN/m2	206
Strain at failure - %	9.8
Max Principal stress - kN/m2	266
Shear strength - kN/m2	103
Mode of failure	Shear

Job No:	240362
Test date:	22/06/2009
Tested By:	D Griffin

Statements of the statement of the state	and the second second second second													
Borehole nu	ımber	BH1A												
Depth - m		5.00												
Description		Dark vellowish brown think	/ lamina	ated cl	loselv fissured slightly s	sandy clay with occ crystals								
Orientation	of specimen	pecifien ventical												
Sample type	Э	Undisturbed												
Batch Numb	ber	9426	Mem	brane	e batch reference	G3654/3								
Length - mn	n	204.0	Mem	brane	e thickness - mm	0.34								
Diameter - r	nm	102.5	Load	I ring r	reference	G1635								
			Ring	const	tant - N/division	5.72								
			Strai	n rate	- %/min	1.0								
			Cell	pressu	ure - kN/m2	100								
Percent	Deviator													
Strain	Stress (kN/m2)			250	 									
0.0	0						-+-+							
0.1	35													
0.2	50													
0.4	63			200										
0.5	76			200										
0.6	87													
0.7	97		N											
0.9	106		Ľ,											
1.0	114		N N	150		+++++								
1.2	128		- ss											
1.5	140		tres											
1.7	149		rs											
2.0	157		ato	100										
2.2	164		evi											
2.5	171													
2.9	185													
3.4	198			50										
3.9	206													
4.4	210					+++++	-+++-1							
4.9	210		1											
5.9	196			0										
				U	0 2	4 6	8							
					· -	. 0	U U							
			1		Str	ain - %								

Natural moisture content - %	30
Bulk density - Mg/m3	1.94
ory density - Mg/m3	1.49
Cell pressure - kN/m2	100
/lax deviator stress - kN/m2	210
Strain at failure - %	4.4
Max Principal stress - kN/m2	310
Shear strength - kN/m2	105
Mode of failure	Shear

Job No:	240362
Test date:	22/06/2009
Tested By:	D Griffin

Borehole number Depth - m Description Orientation of specimen Sample type Batch Number Length - mm		BH1A 14.00 Very dark grey thinly lamin Vertical Undisturbed 9426 204.0	Membrane	sely fissured clay with b batch reference thickness - mm	G3654/7 0.34	
Diameter - n	nm	103.0	Ring const Strain rate Cell press	tant - N/division - %/min ure - kN/m2	5.72 1.0 280	
Percent Strain 0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.9 1.0 1.2 1.5 1.7 2.0 2.2 2.5 2.9 3.4 3.9 4.4 4.9 5.9 6.9 7.8 8.8 9.8	Deviator Stress (kN/m2) 0 40 68 103 128 147 168 182 194 215 233 245 258 272 286 310 328 343 352 360 385 396 306 400 383		450 400 350 300 250 250 200 150 100 50 0		10 rain - %	15
				SUMMARY O		

Natural moisture content - %	25		
Bulk density - Mg/m3	1.99		
Dry density - Mg/m3	1.59		
Cell pressure - kN/m2	280		
Max deviator stress - kN/m2	400		
Strain at failure - %	8.8		
Max Principal stress - kN/m2	680		
Shear strength - kN/m2	200		
Mode of failure	Shear		

Job No: 240362 Test date: 22/06/2009 Tested By: D Griffin

Method of field	sampling	Light	percussion	shell	and	auger	boring

Borehole nu Depth - m Description Orientation of Sample type	mber of specimen	BH2 2.50 Dark yellowish brown thinly Vertical Undisturbed	minated closely fissured slight	y sandy cla	ay with occ ve	ins of gr
Batch Numb Length - mm	per 1	9426 204.0	viembrane batch reference Membrane thickness - mm	0.36	212	
Diameter - n	nm	102.0	Load ring reference Ring constant - N/division	G163	5	
			Strain rate - %/min Cell pressure - kN/m2	1.0 50		
Percent	Deviator Stress					
	(kN/m2)		250	TTTT		\square
0.0	0					
0.1	1/			+++++	+++++++	
0.2	33			+++++	++++++++++++++++++++++++++++++++++++	
0.4	62		200			
0.6	72					
0.7	80		N	+++++	╉╋╋	H
0.9	89			++++	++++++	++-1
1.0	96		₹ ¹⁵⁰			
1.2	109		ss literation			
1.5	118		stree street	+++++	++++++++++++++++++++++++++++++++++++	
1.7	128			+++++		
2.0	144					
2.5	149			+++++	+++++++	<u> </u>
2.9	161			+++++	+++++++	++-
3.4	171			++++	+++++++	++-1
3.9	177		50			
4.4	180		#	+++++	╉╉┽╋╋	H-1
4.9	182		┟┼┼┼┼┼┼┼┼	+++++	╅╋╋╋	++-1
5.9	188					
0.9 7.8	192		0 2 4	6	8	10
1.0	100			train - %		
			SUMMARY	OF RES	ULTS	
			Natural moisture content	%	29	
			Bulk density - Mg/m3		1.98	
			Dry density - Mg/m3		1.53	
			Cell pressure - kN/m2		50	
			Max deviator stress - kN/r	12	192	

Strain at failure - %

Mode of failure

Max Principal stress - kN/m2 Shear strength - kN/m2 6.9 242

96

Shear

240362
22/06/2009
D Griffin

Borehole nu	mber	BH2											
Depth - m	nanes de 1983 (1886) (1	4.50											
Description		Dark vellowish brown thinly	a laminated very closely fissured clay with occ veins of grey and oc										
Description		Verticel											
Orientation	of specimen	venical											
Sample type	9	Undisturbed											
Batch Numb	ber	9426	Membrane batch reference G3652/1										
Length - mm	ı	204.0	Membrane thickness - mm 0.36										
Diameter - n	nm	103.0	Load ring reference G1635										
			Ring constant - N/division 5.72										
			Strain rate - %/min 1.0										
Percent Strain	Deviator Stress												
	(kN/m2)		250										
0.0	0												
0.1	42												
0.2	72												
0.4	84		200 +++++++++++++++++++++++++++++++++++										
0.5	95												
0.0	105												
0.9	114												
1.0	123												
1.2	139												
1.5	152												
1.7	163												
2.0	170												
2.2	180												
2.5	187												
2.9	201												
3.4	213		50 +/+++++++++++++++++++++++++++++++++++										
3.9	223												
4.4	231												
5.9	233												
6.9	237												
7.8	226		0 2 4 6 8 10										
			Strain - %										
			SUMMARY OF RESULTS										
			Network existing content 9/ 28										
			Natural moisture content - % 20										
			Bulk density - Mg/m3 1.94										
			Coll proceure (k)/m2 00										
			Max deviator strong kN/m2 227										
			Widx Ueviator Stress - Kiv/iii2 237 Strain at failure 0/										
			Max Principal stress - kN/m2 327										
			Max Fillipal Stress - Nt/112 527 Shoar strength - kN/m2 110										
			Mode of failure										
			Information Stream										

1.53

150

283

7.8 433

142

Shear

Client: Capita Symonds Limited Site: Hornsey Town Hall Job No: 240362 Test date: 22/06/2009 Tested By: D Griffin

Method of field sampling Light percussion shell and auger boring

Borehole nu	Imber	BH2																	
Depth - m		7.50																	
Description		Dark vellowish brown thinl	v lamin	nated cl	lose	ly fis	sure	ed s	slight	tly s	and	ly c	lay	with	000	crys	stals		
Orientation	of anonimon	Vertical																	
Orientation	or specimen																		
Sample type	9	Undisturbed									_								
Batch Numb	ber	9426	Mer	nbrane	bat	ch r	efere	enc	е		G3652/8								
Length - mn	n	204.0	Mer	nbrane	thic	ckne	ss -	mn	n		0	.36	3						
Diameter - mm		102.0	Loa	d ring i	refer	ence	e 				G	70	35						
			Ring	g const	ant	- IN/0	livis	ION) 1	.12							
			Cell		- %	/mm	1 /m2				1	50							
			Cen	i piessi	une -	KIN/	1112												
Percent Strain	Deviator Stress (kN/m2)			300	T			-				_							
0.0	0										_	_		-					
0.1	43						_	-	\rightarrow	_		+	+	+	-	\vdash	_		
0.2	63			250					X										
0.4	77			200			_	Y	-			-	+	+	-	\vdash	_		
0.5	91				H	\vdash	1	4	-			+	+	+	+	\vdash			
0.6	101						1	-				\square	_	—		\square			
0.7	110		20	200	+	\vdash	4	+				-	+	+	+	\vdash	-		
0.9	119		U/N			1								1					
1.0	128		×	-		A	-	+	-			+	+	+	+	\vdash	-		
1.2	142		SSS	150		1													
1.5	154		Stre	150		/	_	+	-			-	+	_	+	\vdash	_		
2.0	178		or	5	\square	H	+	+	+			+	+	+	-		_		
2.0	187		viat		\square			-	_					_	-	\square	_		
2.5	196		De	3 100	++	\vdash	+	+	+	\vdash		+	+	+	-		-		
2.9	212				T									_		\square			
3.4	227				H	\vdash	+	+	+-	-			+	+	+	$\left \right $	-		
3.9	236			50	F			1					1						
4.4	247				+	\vdash		+		-			+	+	+	+	-		
4.9	258																		
5.9	269			0.250	\vdash	$\left \right $	-	-				+	+		+	\vdash	_		
6.9	275			0	+								-+-						
7.8	283				0				5				10)			15		
8.8	282									Stra	ain	- %	5						
9.8	282																		
10.8	283																		
11.8	278					SI	IM	MA		0	51:	150	SIII	T					
						50	anal	all'		0	L U	150	-101	-110					
			[Natura	Imc	oistu	ire o	on	tent	- %)				29	Э			
			1 6	Bulk d	ensi	ity -	Ma/	m3					T		1.9	97			

Dry density - Mg/m3

Strain at failure - %

Mode of failure

Cell pressure - kN/m2

Shear strength - kN/m2

Max deviator stress - kN/m2

Max Principal stress - kN/m2

Job No:	240362
Test date:	22/06/2009
Tested By:	D Griffin

Borehole nu Depth - m Description Orientation of Sample type Batch Numb Length - mn Diameter - r	mber of specimen eer nm	BH2 10.50 Dark grey thinly laminated Vertical Undisturbed 9426 204.0 102.5	Membra Membra Load rin Ring coi Strain ra Cell pre	ne batch reference G3653/5 ne thickness - mm 0.33 g reference G1635 nstant - N/division 5.72 ite - %/min 1.0 ssure - kN/m2 210
Strain 0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.9 1.0 1.2 1.5 1.7 2.0 2.5 2.9 3.4 3.9 4.4 4.9 5.9 6.9	Stress (kN/m2) 0 62 82 98 110 123 135 146 155 172 187 200 209 219 228 242 253 265 273 280 301 265		35 30 25 20 20 21 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	

Natural moisture content - %	29
Bulk density - Mg/m3	1.97
Dry density - Mg/m3	1.53
Cell pressure - kN/m2	210
Max deviator stress - kN/m2	301
Strain at failure - %	5.9
Max Principal stress - kN/m2	511
Shear strength - kN/m2	151
Mode of failure	Shear

Job No:	240362
Test date:	22/06/2009
Tested By:	D Griffin

Method of field sampling Light percussion shell and auger boring

THE OWNER AND A DESCRIPTION OF A DESCRIP						
Borehole number	BH2					
Donth m	16.50					
Deptn - m	16.50					
Description	Dark grey thinly laminated	lenite				
Orientation of specimen	Vertical					
Sample type	Undisturbed					
	0.100	March and hatch as formers	02052/40			
Batch Number	9426	Membrane batch reference	0.33			
Length - mm	204.0	Load ring reference	0.55			
Diameter - mm	102.5	Ring constant - N/division	5 72			
		Strain rate - %/min	1.5			
		Cell pressure - kN/m2	330			
Percent Deviator Strain Stress						
(kN/m2)		600				
0.0 0						
0.1 75		++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++			
0.2 103		500				
0.4 124						
0.5 143						
0.6 160						
0.7 172		N 400	++++++++++++++++++++++++++++++++++++			
0.9 185						
1.0 198		≖ ++∤+++++				
1.2 220						
1.5 241						
1.7 261			+ + + + + + + + + + + + + + + + + + +			
2.0 278						
2.2 295		a 200				
2.5 309						
2.9 354		<i>i</i>				
3.4 303			++++++++++++++++++++++++++++++++++++			
4.4 390		100				
4.4 600						
5.9 431						
6.9 446		0 +				
7.8 459		0 5 1	10 15 20			
8.8 467		Strai	in - %			
9.8 469		3114				
10.8 478						
11.8 481						
12.7 485		SUMMARY OF	RESULTS			
13.7 492		Natural moisture content - %	25			
14.7 491		Ratural moisture content - 76	1.00			
15.7 495		Bulk density - Mg/m3	1.99			
16.7 496		Dry density - Mg/m3	1.59			
17.6 488		Cell pressure - kN/m2	330			
		Max deviator stress - kN/m2	496			
			40.7			
		Strain at failure - %	16.7			
		Strain at failure - % Max Principal stress - kN/m2	826			

Mode of failure

Shear

Client: Capita Symonds Limited Site: Hornsey Town Hall

Job No:	240362
Test date:	22/06/2009
Tested By:	D Griffin

Method of h	eiu sampling L	ight percussion shell and adge	1 bernig				
Borehole nu	ımber	BH2					
Depth - m		23.00					
Description		Dark arey thinly laminated very closely fissured clay					
Description		Dark grey trining familiated very closely insidied clay					
Orientation	of specimen	Vertical					
Sample type	9	Undisturbed					
Batch Numb	ber	9426	Membrane batch reference G3656/2				
Length - mn	n	204.0	Membrane thickness - mm 0.35				
Diameter - r	nm	102.5	Load ring reference G1635				
			Ring constant - N/division 5.72				
			Strain rate - %/min 1.5				
			Cell pressure - kN/m2 460				
Percent	Deviator						
Strain	(kN/m2)		450				
0.0	0						
0.1	89						
0.2	115		400				
0.4	135						
0.5	152						
0.6	166						
0.7	1/9		≥ 300 / / / / / / / / / / / / / / / / / / 				
0.9	192						
1.0	205						
1.2	246						
1.7	266		δ 200				
2.0	283						
2.2	301						
2.5	313		$\overset{\circ}{=} 150 + \frac{7}{4} + \frac{1}{4} + $				
2.9	335						
3.4	352						
3.9	367						
4.4	382		50				
4.9	391						
6.9	403						
7.8	415		0 2 4 6 8 10				
8.8	406		Strain - %				
			Strain - 76				
			SUMMARY OF RESULTS				
			SOMMART OF RESULTS				
			Natural moisture content - % 27				
			Bulk density - Mg/m3 1.98				
			Dry density - Mg/m3 1.56				
			Cell pressure - kN/m2 460				
			Max deviator stress - kN/m2 416				
			Strain at failure - % 6.9				
			Max Principal stress - kN/m2 876				
			Shear strength - kN/m2 208				
			Mode of failure Shear				

Job No:	240362
Test date:	23/06/2009
Tested By:	D Griffin

			A REAL PROPERTY AND A REAL PROPERTY AND A	
Borehole nu	mber	BH2		
Depth - m		26.00		
Description	tion Dark grey thinly laminated very closely fissured clay with occ selenite			
Orientation	ofspecimen	Vertical		
Comple type	or specifien	Undisturbed		
Sample type	;	Ondisturbed		
Batch Numb	ber	9426	Memb	brane batch reference G3654/8
Length - mm	า	204.0	Memb	brane thickness - mm 0.34
Diameter - n	nm	102.5	Load	ring reference G1635
			Ring	constant - N/division 5.72
			Cellin	nrate - %/mm 1.0
Percent Strain	Deviator Stress			
	(kN/m2)			
0.0	0			
0.1	66			400
0.2	111			
0.4	160			350
0.5	176			
0.7	193			
0.9	207		, m	
1.0	223		kN	
1.2	245		- s	
1.5	267		tres	
1.7	285		L SI	200
2.0	302		ato	
2.2	315		evi	150
2.5	327			
2.9	347			
3.4	301			
3.9	383			
4.4	395			50
5.9	417			
6.9	409			0
	J			0 2 4 6 8
				Strain - %

Natural moisture content - %	26
Bulk density - Mg/m3	2.00
Dry density - Mg/m3	1.59
Cell pressure - kN/m2	520
Max deviator stress - kN/m2	417
Strain at failure - %	5.9
Max Principal stress - kN/m2	937
Shear strength - kN/m2	209
Mode of failure	Shear

Job No:	240362
Test date:	23/06/2009
Tested By:	D Griffin

		the second se	the second s	Service and a service service service and a service	Provide the second state of the second state of the	
Borehole nu	mber	BH3				
Depth - m		1.20				
Description		Dark yellowish brown clay with occ rootlets and occ veins of grey				
Orientation	of specimen	Votical				
Orientation	or specifien					
Sample type	2	Undisturbed				
Batch Numb	ber	9426	Membrar	ne batch reference	G3652/10	
Length - mn	1	204.0	Membrar	ne thickness - mm	0.36	
Diameter - r	nm	101.0	Load ring	reference	G1635	
			Ring con	stant - N/division	5.72	
			Strain rat	e - %/min	2.0	
			Cell pres	sure - KIN/M2	50	
Percent	Deviator					
Strain	(kN/m2)		80			
0.0	0					
0.1	31		70			
0.2	37		/0			
0.4	40					
0.5	43		60			
0.6	45					
0.7	48		n2			
0.9	49		ž 50			
1.0	53					
1.2	55		Se 40			
1.0	55		str			
2.0	57		to			
2.2	59		06 Ki			
2.5	60		De			
2.9	61		20			
3.4	62		20			
3.9	63					
4.4	65		10			
4.9	68					
5.9	68					
6.9	68		0	+ · · · · · · · · · · · · · · · · · · ·		
7.8	69			0 5	10	15
8.8	70			S	train - %	
9.8	67					

SUMMARY OF RESULTS		
Natural moisture content - %	33	
Bulk density - Mg/m3	1.93	
Dry density - Mg/m3	1.45	
Cell pressure - kN/m2	50	
Max deviator stress - kN/m2	70	
Strain at failure - %	8.8	
Max Principal stress - kN/m2	120	
Shear strength - kN/m2	35	
Mode of failure	Shear	

Job No: 240362 Test date: 23/06/2009 Tested By: D Griffin

Method of field sampling Light percussion shell and auge	sion shell and auger boring	n shel	percussion	Light	sampling	of field	Method
--	-----------------------------	--------	------------	-------	----------	----------	--------

Borehole nu	mber	BH3				
Depth - m 5.00		5.00				
Description		Dark vellowish brown thinly laminated very closely fissured slightly sandy clay with occ veins				
Orientation of anonimon						
Orientation of specimen		venical				
Sample type Und		Undisturbed				
Batch Number		9426	Membrane batch reference G3656/8			
Length - mm		204.0	Membrane thickness - mm 0.35			
Diameter - mm		103.0	Load ring reference G1635			
			Ring constant - N/division 5.72			
			Strain rate - %/min 1.5			
			Cell pressure - kiv/m2			
Percent	Deviator					
	(kN/m2)		250			
0.0	0					
0.1	45					
0.2	62					
0.4	11		200			
0.5	89					
0.6	99					
0.7	109					
1.0	125		2 150			
1.0	137					
1.2	147					
1.7	154		tt − tt			
2.0	161					
2.2	167					
2.5	173					
2.9	180					
3.4	186					
3.9	193		50			
4.4	196					
4.9	198					
5.9	198					
6.9	198					
7.8	188		0 2 4 6 8 10			
			Strain - %			
			SUMMARY OF RESULTS			

Natural moisture content - %	30
Bulk density - Mg/m3	1.91
Dry density - Mg/m3	1.47
Cell pressure - kN/m2	100
Max deviator stress - kN/m2	198
Strain at failure - %	4.9
Max Principal stress - kN/m2	298
Shear strength - kN/m2	99
Mode of failure	Shear

Job No:	240362
Test date:	23/06/2009
Tested By:	D Griffin

Method of field sampling Light percussion shell and auger boring

Borehole nu	mber	BH3		
Depth - m		11.00		
Description	Dark grow thinly laminated closely fissured clay with occ selenite			
Description		Dark grey thinly laminated closely issured clay with occ selenite		
Orientation	Drientation of specimen Vertical			
Sample type	9	Undisturbed		
Batch Numb	er	9426	Membrane batch reference	G3656/5
Length - mn	ı	204.0	Membrane thickness - mm	0.35
Diameter - r	nm	103.0	Load ring reference	G1635
			Ring constant - N/division	5.72
			Strain rate - %/min	1.5
			Cell pressure - kN/m2	220
Percent	Deviator			
Strain	(kN/m2)		350	
0.0	0			
0.1	64			
0.2	86		300	
0.4	100			
0.5	111			
0.6	122		250	
0.7	132			
0.9	142			
1.0	152		[™] 200 / / / / / / / / / / / / / / / / / /	
1.2	166		ss 1	
1.5	179			
2.0	203		5 150 5 150	
2.0	213		Jat Jat	
2.5	220			
2.9	234		100 // ////////////////////////////////	
3.4	246		*	
3.9	259			
4.4	271		50	
4.9	282			
5.9	292			
6.9	304			
7.8	313		0 5 1	0 15 20
8.8	311		Strai	n - %
9.8	311			
10.8	308			
11.8	307			RESULTS
12.7	313		Sommarr of	
14.7	313		Natural moisture content - %	27
15.7	298		Bulk density - Mg/m3 1.98	
10.7	200		Dry density - Mg/m3 1.56	
			Cell pressure - kN/m2 220	
			Max deviator stress - kN/m2 313	
			Strain at failure - %	7.8
			Max Principal stress - kN/m2	533

Shear strength - kN/m2

Mode of failure

157

Shear
Client: Capita Symonds Limited Site: Hornsey Town Hall

Job No:	240362
Test date:	23/06/2009
Tested By:	D Griffin

Method of field sampling Light percussion shell and auger boring

Borehole nu Depth - m Description Orientation Sample type	umber of specimen e	BH4A 4.00 Dark yellowish brown thinly Vertical Undisturbed	BH4A 4.00 Dark yellowish brown thinly laminated closely fissured slightly sandy clay with occ veins of g Vertical Undisturbed								
Batch Numb Length - mn Diameter - r	ber n mm	9426 204.0 102.0	Membrane batch referenceG3655/3Membrane thickness - mm0.35Load ring referenceG1635Ring constant - N/division5.72Strain rate - %/min1.5Cell pressure - kN/m280								
Percent Strain 0.0 0.1 0.2 0.4 0.5 0.6 0.7 0.9 1.0 1.2 1.5 1.7 2.0 2.2 2.5 2.9 3.4 3.9 4.4 4.9 5.9 6.9 7.8 8.8 9.8 10.8	Deviator Stress (kN/m2) 0 34 47 55 63 71 78 83 89 97 105 111 118 123 128 136 141 145 148 152 158 157 160 161 160 161										
11.8 12.7	160 157		SUMMARY OF RESULTSNatural moisture content - %33Bulk density - Mg/m31.93Dry density - Mg/m31.45Cell pressure - kN/m280Max deviator stress - kN/m2161Strain at failure - %8.8								
			Max Principal stress - kN/m2 241								

Shear strength - kN/m2

Mode of failure

81

Shear

APPENDIX D

Chemical Laboratory Test Records

Date:26 June 2009Your Ref:240362Our Ref:240362-(6354)-010Project Manager:Andrew TylerReport to:Andrew Tyler

Envirolab Units 7 & 8 Sandpits Business Park Mottram Road Hyde Cheshire SK14 3AR

Final Test Report

Sample(s) of
Received fromSoil from Hornsey Town Hall.STATS Limited
Porterswood House, Porters Wood, St Albans, Hertfordshire, AL3 6PQ.

Date of receipt:16 June 2009Date analysis commenced:16 June 2009Date analysis completed:25 June 2009

Method Statement

Speciated TPH analysis is performed in accordance with procedures A-T-022 using GC-MS with Head Space & A-T-023 using GC-FID.

PAH analysis is performed in accordance with procedure A-T-019.

Loss on drying analysis is performed in accordance with procedure A-T-020.

Subcontract analysis was submitted to a laboratory on Envirolab's approved vendors list.

A copy of the report is attached, UKAS/MCERTS status is detailed on the report.

Prepared by:

M Wabb

Thi McNabb Reporting Analytical Chemist

Approved by:

Gill Scott Laboratory Manager

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. Tests marked "*" in this report are not included in the UKAS Accreditation Schedule for Envirolab. Analytical results reflect the quality of the sample at the time of analysis only.

Report No. 240362-010-(6354) Site Name: Hornsey Town Hall Date: 26/06/2009

Envirolab Ref.												
	PROCEDURE	ISO17025	MCERTS	103455	103459	103460	103463	103464	103467	103468	103469	
Location				TP1	TP3	TP4	TP5	TP6	TP7	TP7	BH3	
Depth (m)				0.25	0.50	0.25	0.50	0.25	0.70	1.00	0.25	
Sample Ref				-	-	-	-	-	-	-	-	
Sample Type				-	-	-	-	-	-	-	-	
MTBE _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.01	
Benzene _R	A-T-022	Y	Ν	0.01	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	
Toluene _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Ethyl Benzene _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
m & p Xylene _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
o Xylene _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Aliphatics C5-C6 _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Aliphatics >C6-C8 _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Aliphatics >C8-C10 _R	A-T-022	Y	Ν	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.08	<0.01	
Aliphatics >C10-C12 _R	A-T-023	Y	Ν	<0.1	2.3	<0.1	<0.1	<0.1	21.8	<0.1	<0.1	
Aliphatics >C12-C16 _R	A-T-023	Y	Ν	<0.1	4.5	<0.1	<0.1	<0.1	119	<0.1	<0.1	
Aliphatics >C16-C21 _R	A-T-023	Y	Ν	<0.1	5.4	<0.1	<0.1	<0.1	167	<0.1	<0.1	
Aliphatics >C21-C35 _R	A-T-023	Y	Ν	<0.1	2.7	<0.1	<0.1	<0.1	34.7	<0.1	<0.1	
Total Aliphatics		Y	Ν	<0.1	14.90	<0.1	<0.1	<0.1	342.50	<0.1	<0.1	
Aromatics >C5-C7 _R	A-T-022	Y	Ν	0.01	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	
Aromatics >C7-C8 _R	A-T-022	Y	Ν	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Aromatics >C8-C9 _R	A-T-022	Y	Ν	0.01	<0.01	<0.01	0.01	<0.01	<0.01	0.02	0.01	
Aromatics >C9-C10 _R	A-T-022	Y	Ν	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	
Aromatics >C10-C12 _R	A-T-023	Y	Ν	<0.1	2.3	2.5	<0.1	4.7	3.9	<0.1	<0.1	
Aromatics >C12-C16 _R	A-T-023	Y	Ν	<0.1	79.0	64.5	<0.1	129	53.7	<0.1	<0.1	
Aromatics >C16-C21 _R	A-T-023	Y	Ν	<0.1	562	325	<0.1	917	118	<0.1	<0.1	
Aromatics >C21-C35 _R	A-T-023	Y	Ν	<0.1	961	735	<0.1	1980	34.7	<0.1	<0.1	
Total Aromatics		Y	Ν	<0.1	1604.31	1127.01	<0.1	3030.71	210.30	<0.1	<0.1	
TPH (Aliphatics & Aromatics)		Y	N	<0.1	1619.21	1127.01	<0.1	3030.71	552.80	0.12	<0.1	

Table 1 - Soil Speciated TPH Results (mg/kg)

Envirolab Ref.											
	PROCEDURE	ISO17025	MCERTS	103455	103460	103463	103467	103468	103469		
Location				TP1	TP4	TP5	TP7	TP7	BH3		
Depth (m)				0.25	0.25	0.50	0.70	1.00	0.25		
Sample Ref				-	-	-	-	-	-		
Sample Type				-	-	-	-	-	-		
Naphthalene _R	A-T-019	Y	Y	0.96	9.08	0.03	0.01	<0.01	0.06		
Acenaphthylene _R	A-T-019	Y	Ν	0.02	0.56	<0.01	0.09	<0.01	0.01		
Acenapthene _R	A-T-019	Y	Y	0.64	5.26	<0.01	0.23	0.01	0.05		
Fluorene _R	A-T-019	Y	Y	0.36	3.71	0.01	0.32	<0.01	0.02		
Phenanthrene _R	A-T-019	Y	Y	2.55	46.0 ^	0.10	0.49	<0.01	0.29		
Anthracene _R	A-T-019	Y	Y	0.57	10.6	0.02	0.06	<0.01	0.08		
Fluoranthene _R	A-T-019	Y	Y	2.82	83.7 ^	0.17	0.13	<0.01	0.27		
Pyrene _R	A-T-019	Y	Y	2.37	78.8 ^	0.14	0.16	<0.01	0.27		
Benz [a] anthracene _R "	A-T-019	Y	Ν	0.46	27.3 ^	0.06	0.05	<0.01	0.04		
Chrysene _R	A-T-019	Y	Y	1.48	36.5 ^	0.12	0.08	<0.01	0.28		
Benzo [b] fluoranthene _R Benzo [k] fluoranthene £ _R	A-T-019	Y	Y	1.40	37.4 ^	0.16	<0.01	<0.01	0.19		
Benzo [a] pyrene _R	A-T-019	Y	Y	0.65	24.5 ^	<0.01	<0.01	<0.01	0.16		
Indeno [123-cd] pyrene _R "	A-T-019	Y	Ν	1.35	22.0 ^	<0.01	<0.01	<0.01	0.38		
Dibenz [ah] anthracene _R	A-T-019	Υ	Y	0.04	3.76	<0.01	<0.01	<0.01	<0.01		
Benzo [ghi] perylene _R	A-T-019	Υ	Y	1.41	20.7 ^	<0.01	<0.01	<0.01	0.58		
Total 16 PAH Reported		Y	Ν	17.08	409.87	0.81	1.62	0.01	2.68		

Table 2 - Soil PAH Results (mg/kg, expressed on a dry weight basis)

Envirolab Ref.									
	PROCEDURE	ISO17025	MCERTS	103459 ~	103464 ~				
Location				TP3	TP6				
Depth (m)				0.50	0.25				
Sample Ref				-	-				
Sample Type				-	-				
Naphthalene _R	A-T-019	Y	Ν	1.00	3.50				
Acenaphthylene _R	A-T-019	Y	Ν	0.53	2.18				
Acenapthene _R	A-T-019	Υ	Ν	4.53	19.5				
Fluorene _R	A-T-019	Y	Ν	1.94	11.7				
Phenanthrene _R	A-T-019	Y	Ν	64.6	212				
Anthracene _R	A-T-019	Y	Ν	16.6	56.2				
Fluoranthene _R	A-T-019	Y	Ν	320	499				
Pyrene _R	A-T-019	Y	Ν	285	426				
Benz [a] anthracene _R	A-T-019	Y	Ν	106	154				
Chrysene _R	A-T-019	Y	Ν	102	149				
Benzo [b] fluoranthene _R Benzo [k] fluoranthene £ _R	A-T-019	Y	N	119	161				
Benzo [a] pyrene _R	A-T-019	Y	Ν	73.8	107				
Indeno [123-cd] pyrene _R	A-T-019	Y	Ν	59.5	85.6				
Dibenz [ah] anthracene _R	A-T-019	Υ	Ν	10.8	18.4				
Benzo [ghi] perylene _R	A-T-019	Y	Ν	46.2	73.3				
Total 16 PAH Reported		Y	N	1211.50	1978.38				

Table 3 - Soil PAH Results (mg/kg, expressed on a dry weight basis)

Envirolab Ref.	103455	103459 ~	103460	103463	103464 ~	103467	103468	103469	
Location	TP1	TP3	TP4	TP5	TP6	TP7	TP7	BH3	
Depth (m)	0.25	0.50	0.25	0.50	0.25	0.70	1.00	0.25	
Sample Ref	-	-	-	-	-	-	-	-	
Sample Type	-	-	-	-	-	-	-	-	
Туре	Sandy	Made Ground	Sandy	Sandy	Made Ground	Clay	Clay	Clay	
Colour	Various	Various	Various	Various	Various	Grey	Brown	Brown	
Consistency	Loose	Loose	Loose	Loose	Loose	Soft	Soft	Soft	
Some Stones	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
>50 Stones	No	Yes	No	No	Yes	No	No	No	
Some Vegetation	No	No	No	No	No	No	No	No	
Very Wet	No	No	No	No	No	No	No	No	
Strong Odour	No	No	No	No	No	No	No	No	

Table 4 - Soil Matrix Table

Appendix

Code	Description
+	Increased detection limit due to sample interference
#	Increased detection limit due to sample dilution
\$	Analysis subcontracted
£	Due to coelution Benzo [b] fluoranthene and Benzo [k] fluoranthene are reported as one value
IS	Insufficient sample for analysis
IS-QC	Insufficient sample to retest following QC fail
NDP	No determination possible
~	Sample type outside the scope of our MCERTS accreditation since matrix not included in method validation
"	Analytes are associated with failed AQC targets for MCERTS, but passed UKAS AQC
^	Sample result is not covered under Envirolab's accreditation schedule for MCERTS as the result exceeds the validated range. See notes 1-3.
F	Analysis suffixed "F" were performed on the filtered sample
D	Analysis suffixed " $_{\rm D}$ " were performed on the sample air dried at <30°C
0	Analysis suffixed "o" were performed on the sample oven dried at 95°C
R	Analysis suffixed " _R " were performed on the sample as received. Where results are expressed on a dry weight basis, the samples were air dried at 95°C
	Notes
1	For MCERTS the validated range covers up to 15mg/kg for individual PAHs, 200mg/kg for totals.
2	For MCERTS the validated range covers up to 3000mg/kg for Total TPH analysis.
3	For MCERTS the validated range covers up to 0.2mg/kg for individual PCBs, and 1.5mg/kg for the total reported as araclor.
4	Natural stones and debris are excluded from analyses
5	Coarse granular material such as concrete, gravel and brick are not MCERTS accredited if they comprise the major part of the sample. Envirolab are currently accredited for MCERTS on soil types Sand, Clay and Loam only

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number:	09/07529/02/01
Client:	Envirolab
Client Ref :	240362-6392

Grain sizes

<0.063mm	Very Fine
0.1mm - 0.063mm	Fine
0.1mm - 2mm	Medium
2mm - 10mm	Coarse
>10mm	Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
103797 BH1A S1	2.0	Brown	0.1mm - 0.063mm	Silty Clay	1
103798 BH1A S2	4.0	Brown	0.1mm - 0.063mm	Silty Clay	1
103799 BH1A S4	9.5	Brown	<0.063mm	Clay	1
103800 BH1A S6	15.5	Brown	<0.063mm	Clay	1
103801 BH2 S3	6.00	Brown	0.1mm - 0.063mm	Silty Clay	1
103802 BH2 S14	11.0	Brown	<0.063mm	Clay	1
103803 BH3 S1	2.0	Light Brown	0.1mm - 0.063mm	Silty Clay	1
103804 BH3 S2	4.0	Brown	0.1mm - 0.063mm	Silty Clay	1
103805 BH4A D19	18.0	Brown	0.1mm - 0.063mm	Silty Clay	1
103806 BH4A S8	20.0	Brown	<0.063mm	Clay	1

* These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. ¹ Sample Description supplied by client

Validated 🗸 Preliminary	ALc	ontro	l Labo T	orator able (ies Ar Of Res	nalytic sults	al Ser	vices	 [#] ISO 17 ^M MCER * Subcor 	025 accree RTS accred	dited lited st
Job Number: Client: Client Ref. No.:	09/0752 Envirol 240362	09/07529/02/01Matrix:SOLIDEnvirolabLocation:HORNSEY TOWN240362-6392Client Contact: Subcon							» Shown	on prev. r	eport
Sample Identity	103797 BH1A S1	103798 BH1A S2	103799 BH1A S4	103800 BH1A S6	103801 BH2 S3	103802 BH2 S14	103803 BH3 S1	103804 BH3 S2	103805 BH4A D19		
Depth (m)	2.0	4.0	9.5	15.5	6.00	11.0	2.0	4.0	18.0	М	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	eth	LoD
Sampled Date										od C)/Un
Sample Received Date	24.06.09	24.06.09	24.06.09	24.06.09	24.06.09	24.06.09	24.06.09	24.06.09	24.06.09	ode	its
Batch	1	1	1	1	1	1	1	1	1		
Sample Number(s)	1	2	3	4	5	6	7	8	9		
Water Soluble Sulphate as SO4 2:1 Extract	3.3	3.2	0.68	NDP	3.1	0.79	3.0	2.8	0.60	$TM098^{\#}_{M}$	<0.003 g/l
pH Value	7.95	8.33	8.42	8.93	8.06	8.45	7.90	7.77	8.01	TM133 [#] _M	<1.00 pH Units
							1		1		

Date 01.07.2009

Validated✓Preliminary	ALc	ALcontrol Laboratories Analytical Services Table Of Results									dited lited st	
Job Number: Client: Client Ref. No.:	09/0752 Envirol 240362	29/02/01 ab -6392		Matrix: Location: Client Contac			SOLID HORNSEY TOWN t:Subcon			HALL		
Sample Identity	103806 BH4A S8											
Depth (m)	20.0									Μ	_	
Sample Type	SOLID									etho	_oD,	
Sampled Date										d C	/Uni	
Sample Received Date	24.06.09									ode	s	
Batch	1											
Sample Number(s)	10											
Water Soluble Sulphate as SO4 2:1 Extract	0.67									$\text{TM098}^{\#}_{\text{M}}$	<0.003 g/l	
pH Value	7.93									TM133 [#] _M	<1.00 pH Units	

Date 01.07.2009

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number:	09/07529/02/01
Client:	Envirolab
Client Ref. No.:	240362-6392

Report Key :

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP No Determination Possible ACM Asbestos Containing Materia ISO 17025 accredited #

- Subcontracted test
- Result previously reported (Incremental reports only)
- MCERTS Accredited Μ
- EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

*

»

ISO 17025 Accredited Surrogate Corrected Summary of Method Codes contained within report : Accredited Wet/Dry Sample ¹ MCERTS Method Description Reference No. Method 4500E, AWWA/APHA, 20th TM098 Determination of Sulphate using the Kone Analyser \checkmark ~ DRY Ed., 1999 Determination of pH in Soil and Water using the GLpH pH Meter ✓ ✓ TM133 BS 1377: Part 3 1990;BS 6068-2.5 WET

NA = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 09/07529/02/01

 Client:
 Envirolab

 Client Ref. No.:
 240362-6392

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	15.6

ALcontrol Laboratories Analytical Services Sample Descriptions

Job Number:	09/07224/02/01
Client:	Envirolab
Client Ref :	240362-6354

Grain sizes

<0.063mm	Very Fine
0.1mm - 0.063mm	Fine
0.1mm - 2mm	Medium
2mm - 10mm	Coarse
>10mm	Very Coarse

Sample Identity	Depth (m)	Colour	Grain Size	Description	Batch
103455(TP1)	0.25	Brown	0.1mm - 2mm	Sand with some Brick	1
103456(TP1)	0.50	Brown	0.1mm - 0.063mm	Silty Clay	1
103457(TP2)	0.30	Brown	0.1mm - 2mm	Sand with some Stones	1
103458(TP2)	0.50	Brown	0.1mm - 0.063mm	Silty Clay	1
103459(TP3)	0.50	Brown	0.1mm - 2mm	Sand with some Stones	1
103460(TP4)	0.25	Brown	0.1mm - 2mm	Sand with some Stones	1
103461(TP4)	0.75	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	1
103463TP5)	0.50	Light Brown	0.1mm - 2mm	Sand with some Stones	1
103464(TP6)	0.25	Brown	0.1mm - 2mm	Sand with some Stones	1
103465(TP6)	1.00	Brown	0.1mm - 0.063mm	Silty Clay	1
103466(TP7)	0.20	Brown	0.1mm - 2mm	Sand with some Stones	1
103467(TP7)	0.7	Brown	0.1mm - 0.063mm	Silty Clay	1
103468(TP7)	1.00	Brown	0.1mm - 0.063mm	Silty Clay	1
103469(BH3)	0.25	Brown	0.1mm - 0.063mm	Silty Clay with some Stones	1
103470(BH3)	0.40	Brown	0.1mm - 0.063mm	Silty Clay	1

* These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials-whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample. ¹ Sample Description supplied by client

Validated 🗸	ALc	ontro	 [#] ISO 17025 accredited ^M MCERTS accredited 									
Preliminary			1	able	JI Kes	Suits			* Subcor	* Subcontracted test		
Job Number: Client: Client Ref. No.:	09/07224/02/01Matrix:SOLIDEnvirolabLocation:HORNSEY TO240362-6354Client Contact: Subcon						SEY TO	WN HALL				
Sample Identity	103455(TP 1)	103456(TP 1)	103457(TP 2)	103458(TP 2)	103459(TP 3)	103460(TP 4)	103461(TP 4)	103462(TP 5)	103463TP 5)			
Depth (m)	0.25	0.50	0.30	0.50	0.50	0.25	0.75	0.35	0.50	Μ	_	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	etho	_0D	
Sampled Date										od C	/Uni	
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	ode	its	
Batch	1	1	1	1	1	1	1	1	1			
Sample Number(s)	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18			
Boron Water Soluble	<3.5	<3.5	-	<3.5	<3.5	<3.5	<3.5	-	<3.5	TM129 [#] _M	<3.5 mg/kg	
Arsenic	<3	<3	-	<3	3	<3	3	-	<3	TM129 [#] _M	<3.0 mg/kg	
Cadmium	< 0.2	< 0.2	-	<0.2	<0.2	<0.2	<0.2	-	< 0.2	TM129	<0.2 mg/kg	
Chromium	9.9	54	-	56	11	14	43	-	11	TM129 [#] _M	<4.5 mg/kg	
Copper	10	23	-	23	7	15	16	-	<6	TM129 [#] _M	<6 mg/kg	
Lead	9	10	-	12	20	73	77	-	9	$TM129^{\#}_{M}$	<2 mg/kg	
Mercury	<0.4	<0.4	-	<0.4	<0.4	<0.4	<0.4	-	<0.4	$TM129^{\#}_{M}$	<0.4 mg/kg	
Nickel	13	45	-	52	12	12	25	-	12	$TM129^{\#}_{M}$	<0.9 mg/kg	
Selenium	<3	<3	-	<3	<3	<3	<3	-	<3	$TM129^{\#}_{M}$	<3 mg/kg	
Zinc	26	86	-	90	33	46	76	-	21	$TM129^{\#}_{M}$	<2.5 mg/kg	
Water Soluble Sulphate as SO4 2:1 Extract	0.067	2.4	-	-	0.005	0.097	-	-	0.36	$TM098^{\#}_{M}$	<0.003 g/l	
Total Organic Carbon	-	<0.2	2.0	-	-	-	-	-	<0.2	TM132 [#] _M	<0.2 %	
Asbestos Containing Material Screen	No ACM Detected	-	-	-	-	No ACM Detected	-	No ACM Detected	-	TM001	NONE	
pH Value	11.49	8.06	-	8.31	11.60	10.22	7.40	-	11.54	TM133 [#] _M	<1.00 pH Units	

Validated 🗸	ALC	ontro	l Labo	orator	ries Ar	nalytic	al Ser	vices	# ISO 17	7025 accree	dited		
Preliminary	Table Of Results									^M MCERTS accredited * Subcontracted test			
Job Number:	09/0722	24/02/01			Matrix: SOLID					i on prev. i	eport		
Client:	Envirol	ab			Locatio	n:	HORNS	SEY TO	WN HA	ALL			
Client Ref. No.:	240362	-6354			Client	Contact	Subcon						
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)						
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40			М	F		
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			etho	,oD		
Sampled Date										d C	'Uni		
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09			ode	ह		
Batch	1	1	1	1	1	1	1						
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32						
Boron Water Soluble	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5			$TM129^{\#}_{M}$	<3.5 mg/kg		
Arsenic	10	3	<3	<3	<3	5	<3			$TM129^{\#}_{M}$	<3.0 mg/kg		
Cadmium	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2	< 0.2			TM129	<0.2 mg/kg		
Chromium	16	56	11	55	45	44	62			$TM129^{\#}_{M}$	<4.5 mg/kg		
Copper	27	24	25	18	22	24	25			$TM129^{\#}_{M}$	<6 mg/kg		
Lead	78	13	26	22	16	56	12			TM129 [#] _M	<2 mg/kg		
Mercury	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4			$TM129^{\#}_{M}$	<0.4 mg/kg		
Nickel	17	65	14	33	41	35	59			TM129 [#] _M	<0.9 mg/kg		
Selenium	<3	<3	<3	<3	<3	<3	<3			TM129 [#] _M	<3 mg/kg		
Zinc	120	84	74	85	80	85	87			TM129 [#] _M	<2.5 mg/kg		
Water Soluble Sulphate as SO4 2:1 Extract	0.17	0.34	0.11	0.22	2.7	0.27	0.26			TM098 [#] _M	<0.003 g/l		
Total Organic Carbon	-	-	-	0.9	-	-	-			TM132 [#] _M	<0.2 %		
Asbestos Containing Material Screen	No ACM Detected	-	No ACM Detected	-	-	No ACM Detected	-			TM001	NONE		
pH Value	9.50	7.48	9.87	7.98	8.22	8.73	7.59			TM133 [#] _M	<1.00 pH Units		

Validated 🗸	ALC	ontro	l Labo	orator	ries Ar	nalytic	al Services	# ISO 17	7025 accre	dited
Preliminary			M MCERTS accredited * Subcontracted test							
Job Number:	09/07224/02/01 Matrix: SOLID							» Showi	i on prev. i	eport
Client:	Envirol	ab			Locatio	n:	HORNSEY TO	WN HA	ALL	
Client Ref. No.:	240362	-6354			Client	Contact	Subcon			
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)			
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40		Μ	Г
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID		etho	.0D
Sampled Date									d C	/Uni
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09		ode	its
Batch	1	1	1	1	1	1	1			
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32			
SVOC by GCMS										
Phenols										
2-Chlorophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2-Methylphenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2-Nitrophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2,4-Dichlorophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2,4-Dimethylphenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2,4,5-Trichlorophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
2,4,6-Trichlorophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
4-Chloro-3-methylphenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
4-Methylphenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
4-Nitrophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
Pentachlorophenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
Phenol	-	-	-	<100	-	-	-		TM157	<100 ug/kg
Chloronaphthalene				<100					TM157	<100 µg/kg
2-Methylnaphthalene	_	_	_	<100		_			TM157	<100 ug/kg
	_	_		<100					TM157	<100 ug/kg
Acenaphthylene	_	_	_	<100	_	_	_		TM157	<100 ug/kg
Anthracene	_	_	_	<100	_	_	_		TM157	<100 ug/kg
Benzo(a)anthracene	_	_	_	<100	_	_	_		TM157	<100 ug/kg
Benzo(a)pyrene	-	-	-	<100	_	-	_		TM157	<100 ug/kg
Benzo(b)fluoranthene	_	_	_	<100	_	_	_		TM157	<100 ug/kg
Benzo(ghi)perylene	-	_	_	<100	-	_	_		TM157	<100 ug/kg
Benzo(k)fluoranthene	_	_	_	<100	-	_	_		TM157	<100 ug/kg
Chrysene	-	-	-	<100	-	-	-		TM157	<100 ug/kg
Dibenzo(a,h)anthracene	-	-	-	<100	-	-	_		TM157	<100 ug/kg
Fluoranthene	-	-	-	<100	-	-	-		TM157	<100 ug/kg
Fluorene	-	-	-	440	-	-	-		TM157	<100 ug/kg
Indeno(1,2,3-cd)pyrene	-	-	-	<100	-	-	-		TM157	<100 ug/kg
							I I			0.0

Validated 🗸	ALcontrol Laboratories Analytical Services								[#] ISO 17025 accredited			
Preliminary			^M MCEF * Subcor	M MCERTS accredited * Subcontracted test								
Job Number:	09/07224/02/01 Matrix: SOLID						» Shown	» Shown on prev. report				
Client:	Envirol	ab			Locatio	n:	HORNSEY TO	WN HA	ALL			
Client Ref. No.:	240362	-6354			Client	Contact	Subcon					
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)					
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40		Μ	Ι		
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID		etho	.0D		
Sampled Date									d C	/Uni		
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09		ode	its		
Batch	1	1	1	1	1	1	1					
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32					
PAHs (cont)												
Naphthalene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Phenanthrene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Pyrene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Phthalates												
Bis(2-ethylhexyl) phthalate	-	-	-	180	-	-	-		TM157	<100 ug/kg		
Butylbenzyl phthalate	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Di-n-butyl phthalate	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Di-n-Octyl phthalate	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Diethyl phthalate	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Dimethyl phthalate	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Other Semi-volatiles												
1,2-Dichlorobenzene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
1,2,4-Trichlorobenzene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
1,3-Dichlorobenzene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
1,4-Dichlorobenzene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
2-Nitroaniline	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
2,4-Dinitrotoluene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
2,6-Dinitrotoluene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
3-Nitroaniline	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
4-Bromophenylphenylether	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
4-Chloroaniline	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
4-Chlorophenylphenylether	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
4-Nitroaniline	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Azobenzene	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Bis(2-chloroethoxy)methane	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Bis(2-chloroethyl)ether	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Carbazole	-	-	-	<100	-	-	-		TM157	<100 ug/kg		
Dibenzofuran	-	-	-	180	-	-	-		TM157	<100 ug/kg		

Validated 🗸 Preliminary	ALc	ontro	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 								
Job Number: Client: Client Ref. No.:	09/07224/02/01Matrix:SOLIDEnvirolabLocation:HORNSEY TO240362-6354Client Contact:Subcon						» Showr	i on prev. r	eport		
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)				
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40			М	_
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			etho	LoD
Sampled Date										od (/Un
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09			ode	its
Batch	1	1	1	1	1	1	1				
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32				
Other Semi-volatiles	(cont)										
Hexachlorobenzene	-	-	-	<100	-	-	-			TM157	<100 ug/kg
Hexachlorobutadiene	-	-	-	<100	-	-	-			TM157	<100 ug/kg
Hexachlorocyclopentadiene	-	-	-	<200	-	-	-			TM157	<100 ug/kg
Hexachloroethane	-	-	-	<100	-	-	-			TM157	<100 ug/kg
Isophorone	-	-	-	<100	-	-	-			TM157	<100 ug/kg
N-nitrosodi-n-propylamine	-	-	-	<100	-	-	-			TM157	<100 ug/kg

Validated 🗸 Preliminary	ALc	ontro	 [#] ISO 17 ^M MCEF * Subcord 	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 								
Job Number: Client: Client Ref. No.:	09/07224/02/01Matrix:SOLIDEnvirolabLocation:HORNSEY TO240362-6354Client Contact: Subcon							SEY TO	» Shown on prev. report			
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)					
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40			М		
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			eth	LoD	
Sampled Date										od (/Un	
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09			ode	its	
Bampic Received Date	1	1	1	1	1	1	1			()		
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32					
Volatile Organic Com	pounds											
4-Bromofluorobenzene % Surrogate Recovery	-	-	-	79	-	-	-			TM116	%	
Dibromofluoromethane % Surrogate Recovery	-	-	-	130	-	-	-			TM116	%	
Toluene-d8 % Surrogate Recovery	-	-	-	85	-	-	-			TM116	%	
Dichlorodifluoromethane	-	-	-	<4	-	-	-			TM116 [#]	<4 ug/kg	
Chloromethane	-	-	-	<7	-	-	-			TM116 [#]	<7 ug/kg	
Vinyl Chloride	-	-	-	<10	-	-	-			TM116 [#] _M	<10 ug/kg	
Bromomethane	-	-	-	<13	-	-	-			TM116	<13 ug/kg	
Chloroethane	-	-	-	<14	-	-	-			TM116 [#]	<14 ug/kg	
Trichlorofluoromethane	-	-	-	<6	-	-	-			TM116 [#] _M	<6 ug/kg	
trans-1-2-Dichloroethene	-	-	-	<11	-	-	-			TM116 [#]	<11 ug/kg	
Dichloromethane	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg	
Carbon Disulphide	-	-	-	<7	-	-	-			TM116 [#] _M	<7 ug/kg	
1.1-Dichloroethene	-	-	-	<10	-	-	-			TM116 [#] _M	<10 ug/kg	
1.1-Dichloroethane	-	-	-	<8	-	-	-			$\mathrm{TM116}^{\#}_{\mathrm{M}}$	<8 ug/kg	
Methyl Tertiary Butyl Ether	-	-	-	<11	-	-	-			TM116	<11 ug/kg	
cis-1-2-Dichloroethene	-	-	-	<5	-	-	-			$TM116^{\#}_{M}$	<5 ug/kg	
Bromochloromethane	-	-	-	<14	-	-	-			TM116 [#]	<14 ug/kg	
Chloroform	-	-	-	<8	-	-	-			$TM116^{\#}_{M}$	<8 ug/kg	
2.2-Dichloropropane	-	-	-	<12	-	-	-			TM116	<12 ug/kg	
1.2-Dichloroethane	-	-	-	<5	-	-	-			TM116 [#]	<5 ug/kg	
1.1.1-Trichloroethane	-	-	-	<7	-	-	-			$TM116^{\#}_{M}$	<7 ug/kg	
1.1-Dichloropropene	-	-	-	<11	-	-	-			TM116 [#] _M	<11 ug/kg	
Benzene	-	-	-	<9	-	-	-			TM116 [#] _M	<9 ug/kg	
Carbontetrachloride	-	-	-	<14	-	-	-			TM116 [#] _M	<14 ug/kg	
Dibromomethane	-	-	-	<9	-	-	-			TM116 [#]	<9 ug/kg	
1.2-Dichloropropane	-	-	-	<12	-	-	-			$\text{TM116}^{\#}_{M}$	<12 ug/kg	
Bromodichloromethane	-	-	-	<7	-	-	-			$\text{TM116}^{\#}_{M}$	<7 ug/kg	
Trichloroethene	-	-	-	<9	-	-	-			$\text{TM116}^{\#}_{M}$	<9 ug/kg	
cis-1-3-Dichloropropene	-	-	-	<14	-	-	-			TM116 [#] _M	<14 ug/kg	
trans-1-3-Dichloropropene	-	-	-	<14	-	-	-			$TM116^{\#}_{M}$	<14 ug/kg	

Validated 🗸 Preliminary	ALc	ontro	 ISO 17 M MCER * Subcon 	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 							
Job Number: Client: Client Ref. No.:	09/07224/02/01Matrix:SOLIDEnvirolabLocation:HORNSEY TOWN HALL240362-6354Client Contact:Subcon							on prev. r	eport		
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)				
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40			М	
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			eth	LoD
Sampled Date										od (/Un
Sample Received Date	16.06.09	16.06.09	16 06 09	16 06 09	16.06.09	16.06.09	16.06.09			ode	its
Bampic Received Date	1	1	1	1	1	1	1			()	
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32				
Volatile Organic Com	pounds	(cont)									
1.1.2-Trichloroethane	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
Toluene	-	-	-	<5	-	-	-			TM116 [#] _M	<5 ug/kg
1.3-Dichloropropane	-	-	-	<7	-	-	-			TM116 [#]	<7 ug/kg
Dibromochloromethane	-	-	-	<13	-	-	-			TM116 [#]	<13 ug/kg
1.2-Dibromoethane	-	-	-	<12	-	-	-			TM116 [#]	<12 ug/kg
Tetrachloroethene	-	-	-	<5	-	-	-			TM116 [#]	<5 ug/kg
1.1.1.2-Tetrachloroethane	-	-	-	<10	-	-	-			TM116 [#] _M	<10 ug/kg
Chlorobenzene	-	-	-	<5	-	-	-			TM116 [#] _M	<5 ug/kg
Ethylbenzene	-	-	-	<4	-	-	-			TM116 [#]	<4 ug/kg
p/m-Xylene	-	-	-	<14	-	-	-			TM116 [#]	<14 ug/kg
Bromoform	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
Styrene	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
1.1.2.2-Tetrachloroethane	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
o-Xylene	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
1.2.3-Trichloropropane	-	-	-	<17	-	-	-			TM116 [#]	<17 ug/kg
Isopropylbenzene	-	-	-	<5	-	-	-			TM116 [#]	<5 ug/kg
Bromobenzene	-	-	-	<10	-	-	-			$TM116^{\#}_{M}$	<10 ug/kg
2-Chlorotoluene	-	-	-	<9	-	-	-			TM116 [#]	<9 ug/kg
Propylbenzene	-	-	-	<11	-	-	-			TM116 [#]	<11 ug/kg
4-Chlorotoluene	-	-	-	<12	-	-	-			TM116 [#]	<12 ug/kg
1.2.4-Trimethylbenzene	-	-	-	<9	-	-	-			TM116 [#]	<9 ug/kg
4-Isopropyltoluene	-	-	-	<11	-	-	-			TM116 [#]	<11 ug/kg
1.3.5-Trimethylbenzene	-	-	-	<8	-	-	-			TM116 [#]	<8 ug/kg
1.2-Dichlorobenzene	-	-	-	<12	-	-	-			TM116 [#] _M	<12 ug/kg
1.4-Dichlorobenzene	-	-	-	<5	-	-	-			TM116 [#] _M	<5 ug/kg
sec-Butylbenzene	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
tert-Butylbenzene	-	-	-	<12	-	-	-			TM116 [#]	<12 ug/kg
1.3-Dichlorobenzene	-	-	-	<6	-	-	-			TM116 [#]	<6 ug/kg
n-Butylbenzene	-	-	-	<10	-	-	-			TM116 [#]	<10 ug/kg
1.2-Dibromo-3-chloropropane	-	-	-	<14	-	-	-			TM116 [#]	<14 ug/kg

Validated 🗸 Preliminary	ALc	ontro	 [#] ISO 17025 accredited ^M MCERTS accredited * Subcontracted test 										
Job Number: Client: Client Ref. No.:	09/0722 Envirol 240362	24/02/01 ab -6354			Matrix Locatio Client (: on: Contact:	SEY TO	» Shown on prev. report					
Sample Identity	103464(TP 6)	103465(TP 6)	103466(TP 7)	103467(TP 7)	103468(TP 7)	103469(BH 3)	103470(B H3)						
Depth (m)	0.25	1.00	0.20	0.7	1.00	0.25	0.40			Μ	_		
Sample Type	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID			leth	LoD		
Sampled Date										od C	/Uni		
Sample Received Date	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09	16.06.09			ode	its		
Batch	1	1	1	1	1	1	1						
Sample Number(s)	19-20	21-22	23-24	25-26	27-28	29-30	31-32						
Volatile Organic Com	pounds	(cont)											
1.2.4-Trichlorobenzene	-	-	-	<6	-	-	-			TM116 [#]	<6 ug/kg		
Naphthalene	-	-	-	<13	-	-	-			TM116 [#]	<13 ug/kg		
1.2.3-Trichlorobenzene	-	-	-	<11	-	-	-			TM116 [#]	<11 ug/kg		

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

Job Number:	
Client:	
Client Ref. No.:	

09/07224/02/01 Envirolab 240362-6354

Report Key :

Results expressed as (e.g.) 1.03E-07 is equivalent to 1.03x10⁻⁷

NDP	No Determination Possible
ACM	Asbestos Containing Materia
#	ISO 17025 accredited

- Subcontracted test
- Result previously reported (Incremental reports only)
- М MCERTS Accredited
- EC Equivalent Carbon (Aromatics C8-C35)

Note: Method detection limits are not always achievable due to various circumstances beyond our control.

*

»

Summary of Method Codes contained within report :

Summa	ry of Method Codes cont	ained within report :	ISO Acci	MC Acci	We Sai	Sur Cor	
Method No.	Reference	Description	17025 redited	ERTS	t/Dry nple 1	rogate rected	
TM001	In - house Method	Screening of Soils for Fibres			WET		
TM098	Method 4500E, AWWA/APHA, 20th Ed., 1999	Determination of Sulphate using the Kone Analyser	~	✓	DRY		
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS			WET		
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	~		WET		
TM116	Modified: US EPA Method 8260, 8120, 8020, 624, 610 & 602	Determination of Volatile Organic Compounds by Headspace / GC-MS	~	~	WET		
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer			DRY		
TM129	Method 3120B, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 3050B	Determination of Metal Cations by IRIS Emission Spectrometer	~	~	DRY		
TM132	In - house Method	ELTRA CS800 Operators Guide	~	~	DRY		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter	~	~	WET		
TM157		Determination of SVOC in Soils by GC-MS extracted by sonication in DCM/Acetone			WET		

NA = not applicable.

ALcontrol Laboratories Analytical Services Table Of Results - Appendix

 Job Number:
 09/07224/02/01

 Client:
 Envirolab

 Client Ref. No.:
 240362-6354

Summary of Coolbox temperatures

Batch No.	Coolbox Temperature (°C)
1	14.5

Appendix 4 – Generic Assessment Criteria Screening Tables.

Contaminated Land Report Hornsey Town Hall Renaissance Project CS/026506, Version 1.0

Contaminated Land Report Hornsey Town Hall Renaissance Project Human Health GAC

Contaminant of	GAC (ma/ka)
Concern	Gro (inging)
Boron	6700
Arsenic	35*
Cadmium	26
Chromium	37
Copper	3900
Lead	210
Mercury	230*
Nickel	130*
Selenium	600*
Zinc	40000
TPH aliphatic >C5-	
C6	17
TPH aliphatic >C6-	
C8	33
TPH aliphatic >C8-	
C10	7.9
TPH aliphatic	
>C10-C12	44
TPH aliphatic	
>C12-C16	210
TPH aliphatic	
>C16-C21	17000
TPH aliphatic	
>C21-C35	17000
TPH aromatic >C5	
C7	15
TPH aromatic >C7	
C8	15
TPH aromatic >C8-	15
	15
	83
TPH aromatic	03
>C12-C16	410
TPH aromatic	410
>C16-C21	1000
TPH aromatic	1000
>C21-C35	1300
Naphthalene	7
Fluoranthene	2400
Pyrene	3500
Benzo[a]anthracen	0000
e	9.7
Chrysene	100
Benzo[b/k]fluorant	100
hene	10
Benzolalovrene	1
Indeno[1,2,3-	
cdlpyrene	10
Dibenzo[a h]anthr	
acene	1
Benzola, h.ilpervle	
ne	10
Benzene	0.11*
Toluene	260*
Ethyl benzene	70*
m- & p-Xvlene	22*
	22*
0 Aylerie	

Note:

GACs produced using CLEA v1.06 and for a residential without plant uptake scenario. Where marked '*' Soil Guideline Values have been used.

Contaminated Land Report Hornsey Town Hall Renaissance Project Chemical Results

Lab Sample Ref	Borehole	Sample Depth (mbgl)	Boron (hot water soluble)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Sulfate (2:1 water soluble) as SO4	тос	TPH aliphatic >C5-C6	TPH aliphatic >C6-C8	TPH aliphatic >C8-C10	TPH aliphatic >C10-C12	TPH aliphatic >C12-C16	TPH aliphatic >C16-C21	TPH aliphatic >C21-C35	TPH aromatic >C5-C7	TPH aromatic >C7-C8	TPH aromatic >C8-C10	TPH aromatic >C10-C12	TPH aromatic >C12-C16	TPH aromatic >C16-C21	TPH aromatic >C21-C35
103455	TP1	0.25	<3.5	<3	<0.2	9.9	10	9	<0.4	13	<3	26	0.067		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	0.01	< 0.01	0.02	<0.1	<0.1	<0.1	<0.1
103456	TP1	0.5	<3.5	<3	<0.2	54	23	10	<0.4	45	<3	86	2.4	<0.2														
103457	TP2	0.3												2														
103458	TP2	0.5	<3.5	<3	<0.2	56	23	12	<0.4	52	<3	90																
103459	TP3	0.5	<3.5	3	<0.2	11	7	20	<0.4	12	<3	33	0.0005		< 0.01	< 0.01	< 0.01	2.3	4.5	5.4	2.7	0.01	< 0.01	< 0.01	2.3	79	562	961
103460	TP4	0.25	<3.5	<3	<0.2	14	15	73	<0.4	12	<3	46	0.097		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	< 0.01	2.5	64.5	325	735
103461	TP4	0.75	<3.5	3	<0.2	43	16	77	<0.4	25	<3	76																
103463	TP5	0.5	<3.5	<3	<0.2	11	<6	9	<0.4	12	<3	21	0.36	<0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	<0.1	<0.1	<0.1	<0.1
103464	TP6	0.25	<3.5	10	<0.2	16	27	78	<0.4	17	<3	120	0.17		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	4.7	129	917	1980
103465	TP6	1	<3.5	3	<0.2	56	24	13	<0.4	65	<3	84	0.34															
103466	TP7	0.2	<3.5	<3	<0.2	11	25	26	<0.4	14	<3	74	0.11															
103467	TP7	0.7	<3.5	<3	<0.2	55	18	22	<0.4	33	<3	85	0.22	0.9	< 0.01	< 0.01	< 0.01	21.8	119	167	34.7	0.01	< 0.01	< 0.01	3.9	53.7	118	34.7
103468	TP7	1	<3.5	<3	<0.2	45	22	16	<0.4	41	<3	80	2.7		< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.02	<0.1	<0.1	<0.1	<0.1
103469	BH3	0.25	<3.5	5	<0.2	44	24	56	<0.4	35	<3	85	0.27		< 0.01	< 0.01	0.08	<0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	<0.1	<0.1	<0.1	<0.1
103470	BH3	0.4	<3.5	<3	<0.2	62	25	12	<0.4	59	<3	87	0.26															

Contaminated Land Report Hornsey Town Hall Renaissance Project Chemical Results

Lab Sample Ref	Total Petroleum Hydrocarb ons	Naphthale ne	Acenaphth ylene	Acenaphth ene	Fluorene	Phenanthr ene	Anthracen e	Fluoranthe ne	Pyrene	Benzo[a]a nthracene	Chrysene	Benzo[b]fl uoranthen e	Benzo[a]p yrene	Indeno[1,2 ,3- cd]pyrene	Dibenzo[a, h]anthrace ne	Benzo[g,h, i]perylene	Total (of 16) PAHs	Benzene	Toluene	Ethyl benzene	m- & p- Xylene	o-Xylene
103455	<0.1	0.96	0.02	0.63	0.36	2.55	0.57	2.82	2.37	0.46	1.48	1.4	0.65	1.35	0.04	1.41	17.08	0.01	< 0.01	< 0.01	< 0.01	< 0.01
103456																						
103457																						
103458																						
103459	1919.21	1	0.53	4.53	1.94	64.6	16.6	320	285	106	102	119	73.8	59.5	10.8	46.2	1211.5	0.01	< 0.01	< 0.01	< 0.01	< 0.01
103460	1127.01	9.08	0.56	5.26	3.71	46	10.6	83.7	78.8	27.3	36.5	37.4	24.5	22	3.76	20.7	409.87	0.01	< 0.01	< 0.01	< 0.01	< 0.01
103461																						
103463	<0.1	0.03	< 0.01	< 0.01	0.01	0.1	0.02	0.17	0.14	0.06	0.12	0.16	< 0.01	< 0.01	< 0.01	< 0.01	0.81	0.01	< 0.01	< 0.01	< 0.01	< 0.01
103464	3030.71	3.5	2.18	19.5	11.7	212	56.2	499	426	154	149	161	107	85.6	18.4	73.3	1978.38	0.01	< 0.01	< 0.01	< 0.01	< 0.01
103465																						
103466																						
103467	210.3	0.01	0.09	0.23	0.32	0.49	0.06	0.13	0.16	0.05	0.08	<0.01	<0.01	<0.01	< 0.01	<0.01	1.62	<0.01	<0.01	<0.01	<0.01	< 0.01
103468	<0.1	< 0.01	< 0.01	0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01	0.01	<0.01	<0.01	<0.01	< 0.01
103469	<0.1	0.06	0.01	0.05	0.02	0.29	0.08	0.27	0.27	0.04	0.28	0.19	0.16	0.38	< 0.01	0.58	2.68	0.01	<0.01	<0.01	<0.01	< 0.01
103470																						